Suppr超能文献

用于基于聚合物的芯片实验室概念的微加工工艺开发,该概念应用于衰减全反射傅里叶变换红外光谱电化学。

Microfabrication Process Development for a Polymer-Based Lab-on-Chip Concept Applied in Attenuated Total Reflection Fourier Transform Infrared Spectroelectrochemistry.

作者信息

Atkinson Noah, Morhart Tyler A, Wells Garth, Flaman Grace T, Petro Eric, Read Stuart, Rosendahl Scott M, Burgess Ian J, Achenbach Sven

机构信息

Department of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada.

Synchrotron Laboratory for Micro and Nano Devices, Canadian Light Source Inc., Saskatoon, SK S7N 2V3, Canada.

出版信息

Sensors (Basel). 2023 Jul 8;23(14):6251. doi: 10.3390/s23146251.

Abstract

Micro electro-mechanical systems (MEMS) combining sensing and microfluidics functionalities, as are common in Lab-on-Chip (LoC) devices, are increasingly based on polymers. Benefits of polymers include tunable material properties, the possibility of surface functionalization, compatibility with many micro and nano patterning techniques, and optical transparency. Often, additional materials, such as metals, ceramics, or silicon, are needed for functional or auxiliary purposes, e.g., as electrodes. Hybrid patterning and integration of material composites require an increasing range of fabrication approaches, which must often be newly developed or at least adapted and optimized. Here, a microfabrication process concept is developed that allows one to implement attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and electrochemistry on an LoC device. It is designed to spatially resolve chemical sensitivity and selectivity, which are instrumental for the detection of chemical distributions, e.g., during on-flow chemical and biological reaction chemistry. The processing sequence involves (i) direct-write and soft-contact UV lithography in SUEX dry resist and replication in polydimethylsiloxane (PDMS) elastomers as the fluidic structure; (ii) surface functionalization of PDMS with oxygen plasma, 3-aminopropyl-triethoxysilane (APTES), and a UV-curable glue (NOA 73) for bonding the fluidic structure to the substrate; (iii) double-sided patterning of silicon nitride-coated silicon wafers serving as the ATR-FTIR-active internal reflection element (IRE) on one side and the electrode-covered substrate for microfluidics on the back side with lift-off and sputter-based patterning of gold electrodes; and (iv) a custom-designed active vacuum positioning and alignment setup. Fluidic channels of 100 μm height and 600 μm width in 5 mm thick PDMS were fabricated on 2" and 4" demonstrators. Electrochemistry on-chip functionality was demonstrated by cyclic voltammetry (CV) of redox reactions involving iron cyanides in different oxidation states. Further, ATR-FTIR measurements of laminar co-flows of HO and DO demonstrated the chemical mapping capabilities of the modular fabrication concept of the LoC devices.

摘要

微机电系统(MEMS)将传感和微流体功能相结合,这在芯片实验室(LoC)设备中很常见,并且越来越多地基于聚合物。聚合物的优点包括可调的材料特性、表面功能化的可能性、与许多微纳图案化技术的兼容性以及光学透明性。通常,出于功能或辅助目的,例如作为电极,还需要额外的材料,如金属、陶瓷或硅。材料复合材料的混合图案化和集成需要越来越多的制造方法,这些方法通常必须新开发或至少进行调整和优化。在此,开发了一种微制造工艺概念,该概念允许在LoC设备上实现衰减全反射傅里叶变换红外光谱(ATR-FTIR)和电化学。它旨在在空间上解析化学灵敏度和选择性,这对于检测化学分布至关重要,例如在流动化学和生物化学反应过程中。加工顺序包括:(i)在SUEX干抗蚀剂中进行直写和软接触紫外光刻,并在聚二甲基硅氧烷(PDMS)弹性体中复制作为流体结构;(ii)用氧等离子体、3-氨丙基三乙氧基硅烷(APTES)和紫外光固化胶(NOA 73)对PDMS进行表面功能化,用于将流体结构粘结到基板上;(iii)对涂有氮化硅的硅片进行双面图案化,一侧用作ATR-FTIR活性内反射元件(IRE),背面用作微流体的电极覆盖基板,通过剥离和基于溅射的金电极图案化;(iv)定制设计的有源真空定位和对准装置。在2英寸和4英寸的演示器上制造了5毫米厚PDMS中高度为100μm、宽度为600μm的流体通道。通过涉及不同氧化态铁氰化物的氧化还原反应的循环伏安法(CV)证明了片上电化学功能。此外,对H₂O和D₂O层流共流的ATR-FTIR测量证明了LoC设备模块化制造概念的化学映射能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验