Kamimura Yoichiro, Miyanaga Yukihiro, Ueda Masahiro
Laboratory for Cell Signaling Dynamics, Quantitative Biology Center (QBiC), RIKEN, Suita, Osaka, 565-0874, Japan; Laboratory for Single Molecular Biology, Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan.
Laboratory for Cell Signaling Dynamics, Quantitative Biology Center (QBiC), RIKEN, Suita, Osaka, 565-0874, Japan; Laboratory for Single Molecular Biology, Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
Proc Natl Acad Sci U S A. 2016 Apr 19;113(16):4356-61. doi: 10.1073/pnas.1516767113. Epub 2016 Apr 4.
Chemotactic eukaryote cells can sense chemical gradients over a wide range of concentrations via heterotrimeric G-protein signaling; however, the underlying wide-range sensing mechanisms are only partially understood. Here we report that a novel regulator of G proteins, G protein-interacting protein 1 (Gip1), is essential for extending the chemotactic range ofDictyosteliumcells. Genetic disruption of Gip1 caused severe defects in gradient sensing and directed cell migration at high but not low concentrations of chemoattractant. Also, Gip1 was found to bind and sequester G proteins in cytosolic pools. Receptor activation induced G-protein translocation to the plasma membrane from the cytosol in a Gip1-dependent manner, causing a biased redistribution of G protein on the membrane along a chemoattractant gradient. These findings suggest that Gip1 regulates G-protein shuttling between the cytosol and the membrane to ensure the availability and biased redistribution of G protein on the membrane for receptor-mediated chemotactic signaling. This mechanism offers an explanation for the wide-range sensing seen in eukaryotic chemotaxis.
趋化性真核细胞可通过异源三聚体G蛋白信号通路在广泛的浓度范围内感知化学梯度;然而,其潜在的宽范围传感机制仅得到部分理解。在此,我们报告一种新型G蛋白调节剂,即G蛋白相互作用蛋白1(Gip1),对于扩展盘基网柄菌细胞的趋化范围至关重要。Gip1的基因破坏在高浓度而非低浓度趋化因子条件下导致梯度感知和定向细胞迁移出现严重缺陷。此外,发现Gip1可在胞质池中结合并隔离G蛋白。受体激活以Gip1依赖的方式诱导G蛋白从胞质向质膜转运,导致G蛋白在膜上沿趋化因子梯度发生偏向性重新分布。这些发现表明,Gip1调节G蛋白在胞质和膜之间的穿梭,以确保G蛋白在膜上的可利用性和偏向性重新分布,用于受体介导的趋化信号传导。这一机制为真核生物趋化中所见的宽范围传感提供了解释。