Cai Qiuxian, Li Zhaojun, Ouyang Qi, Luo Chunxiong, Gordon Vernita D
Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China Department of Physics, Center for Nonlinear Dynamics, University of Texas at Austin, Austin, Texas, USA.
Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
mBio. 2016 Apr 5;7(2):e00013. doi: 10.1128/mBio.00013-16.
Pseudomonas aeruginosais an opportunistic human pathogen that has long been known to chemotax. More recently, it has been established that chemotaxis is an important factor in the ability ofP. aeruginosato make biofilms. Genes that allowP. aeruginosato chemotax are homologous with genes in the paradigmatic model organism for chemotaxis,Escherichia coli However,P. aeruginosais singly flagellated andE. colihas multiple flagella. Therefore, the regulation of counterclockwise/clockwise flagellar motor bias that allowsE. colito efficiently chemotax by runs and tumbles would lead to inefficient chemotaxis byP. aeruginosa, as half of a randomly oriented population would respond to a chemoattractant gradient in the wrong sense. HowP. aeruginosaregulates flagellar rotation to achieve chemotaxis is not known. Here, we analyze the swimming trajectories of single cells in microfluidic channels and the rotations of cells tethered by their flagella to the surface of a variable-environment flow cell. We show thatP. aeruginosachemotaxes by symmetrically increasing the durations of both counterclockwise and clockwise flagellar rotations when swimming up the chemoattractant gradient and symmetrically decreasing rotation durations when swimming down the chemoattractant gradient. Unlike the case forE. coli, the counterclockwise/clockwise bias stays constant forP. aeruginosa We describeP. aeruginosa's chemotaxis using an analytical model for symmetric motor regulation. We use this model to do simulations that show that, givenP. aeruginosa's physiological constraints on motility, its distinct, symmetric regulation of motor switching optimizes chemotaxis.
Chemotaxis has long been known to strongly affect biofilm formation by the opportunistic human pathogenP. aeruginosa, whose essential chemotaxis genes have homologues inE. coli, which achieves chemotaxis by biasing the relative probability of counterclockwise and clockwise flagellar rotation. However, the physiological difference between multiflagellatedE. coliand singly flagellatedP. aeruginosaimplies that biased motor regulation should preventP. aeruginosapopulations from chemotaxing efficiently. Here, we used experiments, analytical modeling, and simulations to demonstrate thatP. aeruginosauses unbiased, symmetric regulation of the flagellar motor to maximize its chemotaxis efficiency. This mode of chemotaxis was not previously known and demonstrates a new variant of a paradigmatic signaling system in an important human pathogen.
铜绿假单胞菌是一种机会性人类病原体,长期以来已知其具有趋化作用。最近,已确定趋化作用是铜绿假单胞菌形成生物膜能力的一个重要因素。使铜绿假单胞菌能够趋化的基因与趋化作用范例模型生物大肠杆菌中的基因同源。然而,铜绿假单胞菌只有一根鞭毛,而大肠杆菌有多根鞭毛。因此,允许大肠杆菌通过游动和翻滚有效地趋化的逆时针/顺时针鞭毛马达偏向的调节,会导致铜绿假单胞菌趋化效率低下,因为随机定向群体中的一半会以错误的方向对化学引诱剂梯度做出反应。铜绿假单胞菌如何调节鞭毛旋转以实现趋化作用尚不清楚。在这里,我们分析了微流控通道中单个细胞的游动轨迹以及通过鞭毛 tethered 到可变环境流动池表面的细胞的旋转。我们表明,当沿化学引诱剂梯度向上游动时,铜绿假单胞菌通过对称增加逆时针和顺时针鞭毛旋转的持续时间来趋化,而当沿化学引诱剂梯度向下游动时,对称减少旋转持续时间。与大肠杆菌的情况不同,铜绿假单胞菌的逆时针/顺时针偏向保持恒定。我们使用对称马达调节的分析模型来描述铜绿假单胞菌的趋化作用。我们使用这个模型进行模拟,结果表明,考虑到铜绿假单胞菌在运动性方面的生理限制,其独特的、对称的马达切换调节优化了趋化作用。
长期以来已知趋化作用会强烈影响机会性人类病原体铜绿假单胞菌的生物膜形成,其基本趋化基因在大肠杆菌中有同源物,大肠杆菌通过偏向逆时针和顺时针鞭毛旋转的相对概率来实现趋化作用。然而,多鞭毛的大肠杆菌和单鞭毛的铜绿假单胞菌之间的生理差异意味着偏向的马达调节应该会阻止铜绿假单胞菌群体有效地趋化。在这里,我们通过实验、分析建模和模拟证明,铜绿假单胞菌对鞭毛马达使用无偏向的、对称的调节来最大化其趋化效率。这种趋化模式以前并不为人所知,并且在一种重要的人类病原体中展示了一种范例信号系统的新变体。