Reintjes Anja, Fuchs Julian E, Kremser Leopold, Lindner Herbert H, Liedl Klaus R, Huber Lukas A, Valovka Taras
Institute of Biochemistry, University of Innsbruck, A-6020 Innsbruck, Austria;
Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, A-6020 Innsbruck, Austria; Center for Molecular Biosciences, University of Innsbruck, A-6020 Innsbruck, Austria;
Proc Natl Acad Sci U S A. 2016 Apr 19;113(16):4326-31. doi: 10.1073/pnas.1522372113. Epub 2016 Apr 5.
Nuclear factor kappa B (NF-κB) is an inducible transcription factor that plays critical roles in immune and stress responses and is often implicated in pathologies, including chronic inflammation and cancer. Although much has been learned about NF-κB-activating pathways, the specific repression of NF-κB is far less well understood. Here we identified the type I protein arginine methyltransferase 1 (PRMT1) as a restrictive factor controlling TNFα-induced activation of NF-κB. PRMT1 forms a cellular complex with NF-κB through direct interaction with the Rel homology domain of RelA. We demonstrate that PRMT1 methylates RelA at evolutionary conserved R30, located in the DNA-binding L1 loop, which is a critical residue required for DNA binding. Asymmetric R30 dimethylation inhibits the binding of RelA to DNA and represses NF-κB target genes in response to TNFα. Molecular dynamics simulations of the DNA-bound RelA:p50 predicted structural changes in RelA caused by R30 methylation or a mutation that interferes with the stability of the DNA-NF-κB complex. Our findings provide evidence for the asymmetric arginine dimethylation of RelA and unveil a unique mechanism controlling TNFα/NF-κB signaling.
核因子κB(NF-κB)是一种可诱导的转录因子,在免疫和应激反应中起关键作用,并且常常与包括慢性炎症和癌症在内的病理学相关。尽管关于NF-κB激活途径已经有了很多了解,但对NF-κB的特异性抑制却知之甚少。在这里,我们鉴定出I型蛋白精氨酸甲基转移酶1(PRMT1)是控制肿瘤坏死因子α(TNFα)诱导的NF-κB激活的限制因子。PRMT1通过与RelA的Rel同源结构域直接相互作用,与NF-κB形成细胞复合物。我们证明,PRMT1使位于DNA结合L1环中的进化保守位点R30处的RelA甲基化,这是DNA结合所需的关键残基。不对称的R30二甲基化抑制RelA与DNA的结合,并抑制NF-κB靶基因对TNFα的应答。结合DNA的RelA:p50的分子动力学模拟预测了由R30甲基化或干扰DNA-NF-κB复合物稳定性的突变引起的RelA结构变化。我们的研究结果为RelA的不对称精氨酸二甲基化提供了证据,并揭示了一种控制TNFα/NF-κB信号传导的独特机制。