Suppr超能文献

神经元分化过程中的代谢重编程。

Metabolic reprogramming during neuronal differentiation.

作者信息

Agostini M, Romeo F, Inoue S, Niklison-Chirou M V, Elia A J, Dinsdale D, Morone N, Knight R A, Mak T W, Melino G

机构信息

Medical Research Council, Toxicology Unit, Leicester University, Leicester LE1 9HN, UK.

Department of Experimental Medicine and Surgery, University of Rome 'Tor Vergata', Rome 00133, Italy.

出版信息

Cell Death Differ. 2016 Sep 1;23(9):1502-14. doi: 10.1038/cdd.2016.36. Epub 2016 Apr 8.

Abstract

Newly generated neurons pass through a series of well-defined developmental stages, which allow them to integrate into existing neuronal circuits. After exit from the cell cycle, postmitotic neurons undergo neuronal migration, axonal elongation, axon pruning, dendrite morphogenesis and synaptic maturation and plasticity. Lack of a global metabolic analysis during early cortical neuronal development led us to explore the role of cellular metabolism and mitochondrial biology during ex vivo differentiation of primary cortical neurons. Unexpectedly, we observed a huge increase in mitochondrial biogenesis. Changes in mitochondrial mass, morphology and function were correlated with the upregulation of the master regulators of mitochondrial biogenesis, TFAM and PGC-1α. Concomitant with mitochondrial biogenesis, we observed an increase in glucose metabolism during neuronal differentiation, which was linked to an increase in glucose uptake and enhanced GLUT3 mRNA expression and platelet isoform of phosphofructokinase 1 (PFKp) protein expression. In addition, glutamate-glutamine metabolism was also increased during the differentiation of cortical neurons. We identified PI3K-Akt-mTOR signalling as a critical regulator role of energy metabolism in neurons. Selective pharmacological inhibition of these metabolic pathways indicate existence of metabolic checkpoint that need to be satisfied in order to allow neuronal differentiation.

摘要

新生成的神经元会经历一系列明确的发育阶段,这使它们能够融入现有的神经元回路。退出细胞周期后,有丝分裂后的神经元会经历神经元迁移、轴突伸长、轴突修剪、树突形态发生以及突触成熟和可塑性变化。早期皮质神经元发育过程中缺乏全面的代谢分析,这促使我们去探索细胞代谢和线粒体生物学在原代皮质神经元体外分化过程中的作用。出乎意料的是,我们观察到线粒体生物发生大幅增加。线粒体质量、形态和功能的变化与线粒体生物发生的主要调节因子TFAM和PGC-1α的上调相关。与线粒体生物发生同时,我们观察到神经元分化过程中葡萄糖代谢增加,这与葡萄糖摄取增加、GLUT3 mRNA表达增强以及磷酸果糖激酶1(PFKp)血小板同工型蛋白表达增加有关。此外,皮质神经元分化过程中谷氨酸-谷氨酰胺代谢也增加。我们确定PI3K-Akt-mTOR信号通路在神经元能量代谢中起关键调节作用。对这些代谢途径的选择性药理抑制表明存在代谢检查点,只有满足这些检查点才能实现神经元分化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/daa9/5072427/dcc472254eb5/cdd201636f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验