Department of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, 1950, Sion, Switzerland.
Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
Angew Chem Int Ed Engl. 2016 May 4;55(19):5789-92. doi: 10.1002/anie.201601582. Epub 2016 Apr 5.
Favoring the CO2 reduction reaction (CO2RR) over the hydrogen evolution reaction and controlling the selectivity towards multicarbon products are currently major scientific challenges in sustainable energy research. It is known that the morphology of the catalyst can modulate catalytic activity and selectivity, yet this remains a relatively underexplored area in electrochemical CO2 reduction. Here, we exploit the material tunability afforded by colloidal chemistry to establish unambiguous structure/property relations between Cu nanocrystals and their behavior as electrocatalysts for CO2 reduction. Our study reveals a non-monotonic size-dependence of the selectivity in cube-shaped copper nanocrystals. Among 24 nm, 44 nm and 63 nm cubes tested, the cubes with 44 nm edge length exhibited the highest selectivity towards CO2RR (80 %) and faradaic efficiency for ethylene (41 %). Statistical analysis of the surface atom density suggests the key role played by edge sites in CO2RR.
促进二氧化碳还原反应 (CO2RR) 优于析氢反应,并控制多碳产物的选择性,是可持续能源研究中的主要科学挑战。已知催化剂的形态可以调节催化活性和选择性,但这在电化学 CO2 还原中仍然是一个相对未被充分探索的领域。在这里,我们利用胶体化学提供的材料可调变性,在 Cu 纳米晶体作为 CO2 还原电催化剂的行为与其之间建立明确的结构-性能关系。我们的研究揭示了立方体形 Cu 纳米晶体的选择性随尺寸的非单调依赖性。在所测试的 24nm、44nm 和 63nm 立方体中,边长为 44nm 的立方体对 CO2RR(80%)和乙烯的法拉第效率(41%)表现出最高的选择性。对表面原子密度的统计分析表明,边缘位在 CO2RR 中起着关键作用。