Albertini Petru P, Calderon Mora Jennifer, Guskova Margarita, Rodlamul Pattaraphon, Hicks Noah, Leemans Jari, Loiudice Anna, Buonsanti Raffaella
Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland.
J Am Chem Soc. 2025 Jul 23;147(29):25517-25526. doi: 10.1021/jacs.5c05697. Epub 2025 Jul 10.
Tailoring the structure of the active sites and engineering the microenvironment to tune catalytic performance are both at the forefront of catalysis. Yet, design principles bridging the two remain missing. Here, we synthesize a platform consisting of well-defined cubic Cu nanocrystals with an oxide coating of tunable porosity, here alumina. We indicate that varying the porosity modulates the relative importance of the native geometric effect and the introduced interfacial electronic effect. We link the change in porosity to the catalytic behavior in the electrochemical CO reduction reaction. In particular, we use the shift in selectivity as a key descriptor to show that the electronic effect overrules the geometric effect with increasing porosity. We find that a balance between geometric and electronic effects optimizes the intrinsic catalytic reactivity. Importantly, we use this platform to propose that active sites under electronic effect are more sensitive to the change in microenvironment, here exemplified by alkali cations in the electrolyte. The fundamental insights gathered through the proposed catalytic platform stimulate future discussion on linking the nature of the active sites and the microenvironment engineering.
定制活性位点的结构并调控微环境以优化催化性能,均处于催化领域的前沿。然而,连接这两者的设计原则仍然缺失。在此,我们合成了一个由具有可调孔隙率的氧化物涂层(此处为氧化铝)的明确立方铜纳米晶体组成的平台。我们指出,改变孔隙率会调节固有几何效应和引入的界面电子效应的相对重要性。我们将孔隙率的变化与电化学CO还原反应中的催化行为联系起来。特别是,我们使用选择性的变化作为关键描述符,以表明随着孔隙率增加,电子效应超越几何效应。我们发现几何效应和电子效应之间的平衡可优化固有催化反应性。重要的是,我们利用这个平台提出,处于电子效应下的活性位点对微环境的变化更敏感,此处以电解质中的碱金属阳离子为例。通过所提出的催化平台获得的基本见解激发了关于连接活性位点性质和微环境工程的未来讨论。