Chung K W, Lui Roger
Department of Mathematics, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong.
Department of Mathematical Sciences, WPI, Worcester, MA, 01609, USA.
J Math Biol. 2016 Dec;73(6-7):1467-1489. doi: 10.1007/s00285-016-1000-x. Epub 2016 Apr 8.
The question about whether a periodic solution can exists for a given epidemiological model is a complicated one and has a long history (Hethcote and Levin, Applied math. ecology, biomathematics, vol 18. Springer, Berlin, pp 193-211, 1989). For influenza models, it is well known that a periodic solution can exists for a single-strain model with periodic contact rate (Aron and Schwartz, J Math Biol 110:665-679, 1984; Kuznetsov and Piccardi, J Math Biol 32:109-121, 1994), or a multiple-strain model with cross-immunity and quarantine class or age-structure (Nuño et al., Mathematical epidemiology. Lecture notes in mathematics, vol 1945. Springer, Berlin, 2008, chapter 13). In this paper, we prove the local asymptotic stability of the interior steady-state of a two-strain influenza model with sufficiently close cross-immunity and no quarantine class or age-structure. We also show that if the cross-immunity between two strains are far apart; then it is possible for the interior steady-state to lose its stability and bifurcation of periodic solutions can occur. Our results extend those obtained by Nuño et.al. (SIAM J Appl Math 65:964-982, 2005). This problem is important because understanding the reasons behind periodic outbreaks of seasonal flu is an important issue in public health.
对于给定的流行病学模型,是否存在周期解是一个复杂的问题,且有着悠久的历史(赫斯科特和莱文,《应用数学生态学,生物数学》,第18卷。施普林格出版社,柏林,第193 - 211页,1989年)。对于流感模型,众所周知,具有周期接触率的单株模型(阿隆和施瓦茨,《数学生物学杂志》110:665 - 679,1984年;库兹涅佐夫和皮卡迪,《数学生物学杂志》32:109 - 121,1994年),或者具有交叉免疫以及检疫类别或年龄结构的多株模型(努尼奥等人,《数学流行病学》。《数学讲义》,第1945卷。施普林格出版社,柏林,2008年,第13章)可以存在周期解。在本文中,我们证明了具有足够接近的交叉免疫且没有检疫类别或年龄结构的两株流感模型内部稳态的局部渐近稳定性。我们还表明,如果两株之间的交叉免疫差异很大;那么内部稳态可能会失去稳定性,并且可能会出现周期解的分岔。我们的结果扩展了努尼奥等人(《工业与应用数学学会应用数学杂志》65:964 - 982,2005年)所得到的结果。这个问题很重要,因为理解季节性流感周期性爆发背后的原因是公共卫生中的一个重要问题。