Chakravarti Aravinda, Turner Tychele N
Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
Bioessays. 2016 Jun;38(6):578-86. doi: 10.1002/bies.201500203. Epub 2016 Apr 8.
The major challenge in complex disease genetics is to understand the fundamental features of this complexity and why functional alterations at multiple independent genes conspire to lead to an abnormal phenotype. We hypothesize that the various genes involved are all functionally united through gene regulatory networks (GRN), and that mutant phenotypes arise from the consequent perturbation of one or more rate-limiting steps that affect the function of the entire GRN. Understanding a complex phenotype thus entails unraveling the details of each GRN, namely, the transcription factors that bind to cis regulatory elements affected by sequence variants altering transcription of specific genes, and their mutual feedback relationships. These GRNs can be identified through their rate-limiting steps and are best uncovered by genomic analyses of rare, extreme phenotype families, thus providing a coherent molecular basis to complex traits and disorders.
复杂疾病遗传学的主要挑战在于理解这种复杂性的基本特征,以及多个独立基因的功能改变为何共同导致异常表型。我们假设,所涉及的各种基因都通过基因调控网络(GRN)在功能上相互关联,并且突变表型源于影响整个GRN功能的一个或多个限速步骤的扰动。因此,理解复杂表型需要阐明每个GRN的细节,即与受序列变异影响的顺式调控元件结合的转录因子,这些序列变异改变了特定基因的转录,以及它们之间的相互反馈关系。这些GRN可以通过其限速步骤来识别,并且通过对罕见的极端表型家族进行基因组分析能够最好地揭示它们,从而为复杂性状和疾病提供一个连贯的分子基础。