Suppr超能文献

自愿驱动的肘部矫形器,具有速度控制的震颤抑制功能。

Voluntary-Driven Elbow Orthosis with Speed-Controlled Tremor Suppression.

机构信息

MENRVA Lab, Engineering Science Department, Simon Fraser University , Burnaby, BC , Canada.

出版信息

Front Bioeng Biotechnol. 2016 Mar 31;4:29. doi: 10.3389/fbioe.2016.00029. eCollection 2016.

Abstract

Robotic technology is gradually becoming commonplace in the medical sector and in the service of patients. Medical conditions that have benefited from significant technological development include stroke, for which rehabilitation with robotic devices is administered, and surgery assisted by robots. Robotic devices have also been proposed for assistance of movement disorders. Pathological tremor, among the most common movement disorders, is one such example. In practice, the dissemination and availability of tremor suppression robotic systems has been limited. Devices in the marketplace tend to either be non-ambulatory or to target specific functions, such as eating and drinking. We have developed a one degree-of-freedom (DOF) elbow orthosis that could be worn by an individual with tremor. A speed-controlled, voluntary-driven suppression approach is implemented with the orthosis. Typically tremor suppression methods estimate the tremor component of the signal and produce a canceling counterpart signal. The suggested approach instead estimates the voluntary component of the motion. A controller then actuates the orthosis based on the voluntary signal, while simultaneously rejecting the tremorous motion. In this work, we tested the suppressive orthosis using a one DOF robotic system that simulates the human arm. The suggested suppression approach does not require a model of the human arm. Moreover, the human input along with the orthosis forearm gravitational forces, of non-linear nature, are considered as part of the disturbance to the suppression system. Therefore, the suppression system can be modeled linearly. Nevertheless, the orthosis forearm gravitational forces can be compensated by the suppression system. The electromechanical design of the orthosis is presented, and data from an essential tremor patient is used as the human input. Velocity tracking results demonstrate an RMS error of 0.31 rad/s, and a power spectral density shows a reduction of the tremor signal by 99.8%, while the intentional component power was reduced by <1%.

摘要

机器人技术在医疗领域逐渐普及,为患者服务。受益于重大技术发展的医疗状况包括中风,机器人设备用于中风康复,以及机器人辅助手术。机器人设备也被提议用于运动障碍的辅助。病理性震颤是最常见的运动障碍之一,就是这样一个例子。在实践中,震颤抑制机器人系统的传播和可用性受到限制。市场上的设备往往要么是非步行的,要么针对特定的功能,如进食和饮水。我们开发了一种一自由度(DOF)的肘部矫形器,可以由震颤患者佩戴。矫形器采用速度控制、自愿驱动的抑制方法。通常,震颤抑制方法估计信号的震颤分量,并产生抵消的对应信号。所提出的方法相反,估计运动的自愿分量。然后,控制器根据自愿信号致动矫形器,同时拒绝震颤运动。在这项工作中,我们使用模拟人体手臂的一自由度机器人系统测试了抑制矫形器。所提出的抑制方法不需要人体手臂的模型。此外,矫形器前臂的非线性重力以及人体输入被视为抑制系统的干扰的一部分。因此,抑制系统可以线性建模。然而,矫形器前臂的重力可以被抑制系统补偿。介绍了矫形器的机电设计,并使用特发性震颤患者的数据作为人体输入。速度跟踪结果表明 RMS 误差为 0.31 rad/s,功率谱密度显示震颤信号降低了 99.8%,而有意分量功率降低了<1%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验