Suppr超能文献

神经群体数据的混合主成分分析

Demixed principal component analysis of neural population data.

作者信息

Kobak Dmitry, Brendel Wieland, Constantinidis Christos, Feierstein Claudia E, Kepecs Adam, Mainen Zachary F, Qi Xue-Lian, Romo Ranulfo, Uchida Naoshige, Machens Christian K

机构信息

Champalimaud Neuroscience Program, Champalimaud Centre for the Unknown, Lisbon, Portugal.

École Normale Supérieure, Paris, France.

出版信息

Elife. 2016 Apr 12;5:e10989. doi: 10.7554/eLife.10989.

Abstract

Neurons in higher cortical areas, such as the prefrontal cortex, are often tuned to a variety of sensory and motor variables, and are therefore said to display mixed selectivity. This complexity of single neuron responses can obscure what information these areas represent and how it is represented. Here we demonstrate the advantages of a new dimensionality reduction technique, demixed principal component analysis (dPCA), that decomposes population activity into a few components. In addition to systematically capturing the majority of the variance of the data, dPCA also exposes the dependence of the neural representation on task parameters such as stimuli, decisions, or rewards. To illustrate our method we reanalyze population data from four datasets comprising different species, different cortical areas and different experimental tasks. In each case, dPCA provides a concise way of visualizing the data that summarizes the task-dependent features of the population response in a single figure.

摘要

诸如前额叶皮层等高级皮层区域中的神经元,通常会被调整以适应各种感觉和运动变量,因此被认为具有混合选择性。单个神经元反应的这种复杂性可能会掩盖这些区域所代表的信息以及信息的呈现方式。在这里,我们展示了一种新的降维技术——解混主成分分析(dPCA)的优势,该技术将群体活动分解为几个成分。除了系统地捕获数据的大部分方差外,dPCA还揭示了神经表征对诸如刺激、决策或奖励等任务参数的依赖性。为了说明我们的方法,我们重新分析了来自四个数据集的群体数据,这些数据集包括不同的物种、不同的皮层区域和不同的实验任务。在每种情况下,dPCA都提供了一种简洁的数据可视化方式,在单个图形中总结了群体反应的任务相关特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/316d/4887222/c75bc6fc5d1a/elife-10989-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验