Kobak Dmitry, Brendel Wieland, Constantinidis Christos, Feierstein Claudia E, Kepecs Adam, Mainen Zachary F, Qi Xue-Lian, Romo Ranulfo, Uchida Naoshige, Machens Christian K
Champalimaud Neuroscience Program, Champalimaud Centre for the Unknown, Lisbon, Portugal.
École Normale Supérieure, Paris, France.
Elife. 2016 Apr 12;5:e10989. doi: 10.7554/eLife.10989.
Neurons in higher cortical areas, such as the prefrontal cortex, are often tuned to a variety of sensory and motor variables, and are therefore said to display mixed selectivity. This complexity of single neuron responses can obscure what information these areas represent and how it is represented. Here we demonstrate the advantages of a new dimensionality reduction technique, demixed principal component analysis (dPCA), that decomposes population activity into a few components. In addition to systematically capturing the majority of the variance of the data, dPCA also exposes the dependence of the neural representation on task parameters such as stimuli, decisions, or rewards. To illustrate our method we reanalyze population data from four datasets comprising different species, different cortical areas and different experimental tasks. In each case, dPCA provides a concise way of visualizing the data that summarizes the task-dependent features of the population response in a single figure.
诸如前额叶皮层等高级皮层区域中的神经元,通常会被调整以适应各种感觉和运动变量,因此被认为具有混合选择性。单个神经元反应的这种复杂性可能会掩盖这些区域所代表的信息以及信息的呈现方式。在这里,我们展示了一种新的降维技术——解混主成分分析(dPCA)的优势,该技术将群体活动分解为几个成分。除了系统地捕获数据的大部分方差外,dPCA还揭示了神经表征对诸如刺激、决策或奖励等任务参数的依赖性。为了说明我们的方法,我们重新分析了来自四个数据集的群体数据,这些数据集包括不同的物种、不同的皮层区域和不同的实验任务。在每种情况下,dPCA都提供了一种简洁的数据可视化方式,在单个图形中总结了群体反应的任务相关特征。