Tessier A, Bertrand J, Chenel M, Comets E
INSERM IAME UMR 1137 Paris France; Université Paris Diderot, IAME UMR 1137, Sorbonne Paris Cité Paris France; Division of Clinical Pharmacokinetics and Pharmacometrics Institut de Recherches Internationales Servier Suresnes France.
University College London, Genetics Institute London UK.
CPT Pharmacometrics Syst Pharmacol. 2016 Mar;5(3):123-31. doi: 10.1002/psp4.12054. Epub 2016 Mar 14.
We show through a simulation study how the joint analysis of data from phase I and phase II studies enhances the power of pharmacogenetic tests in pharmacokinetic (PK) studies. PK profiles were simulated under different designs along with 176 genetic markers. The null scenarios assumed no genetic effect, while under the alternative scenarios, drug clearance was associated with six genetic markers randomly sampled in each simulated dataset. We compared penalized regression Lasso and stepwise procedures to detect the associations between empirical Bayes estimates of clearance, estimated by nonlinear mixed effects models, and genetic variants. Combining data from phase I and phase II studies, even if sparse, increases the power to identify the associations between genetics and PK due to the larger sample size. Design optimization brings a further improvement, and we highlight a direct relationship between η-shrinkage and loss of genetic signal.
我们通过一项模拟研究展示了如何对I期和II期研究的数据进行联合分析,从而提高药代动力学(PK)研究中药效遗传学检测的效能。在不同设计下模拟了PK概况以及176个遗传标记。无效假设情景假定无基因效应,而在备择假设情景下,在每个模拟数据集中随机抽取六个遗传标记,药物清除率与这些标记相关。我们比较了惩罚回归Lasso法和逐步法,以检测由非线性混合效应模型估计的清除率的经验贝叶斯估计值与基因变异之间的关联。即使数据稀疏,将I期和II期研究的数据相结合,由于样本量更大,也能提高识别基因与PK之间关联的效能。设计优化带来了进一步的改善,并且我们强调了η收缩与基因信号损失之间的直接关系。