Bertrand Julie, De Iorio Maria, Balding David J
aUniversity College London Genetics Institute bUniversity College London, Statistical Science Department, London, UK.
Pharmacogenet Genomics. 2015 May;25(5):231-8. doi: 10.1097/FPC.0000000000000127.
In a previous work, we have shown that penalized regression approaches can allow many genetic variants to be incorporated into sophisticated pharmacokinetic (PK) models in a way that is both computationally and statistically efficient. The phenotypes were the individual model parameter estimates, obtained a posteriori of the model fit and known to be sensitive to the study design.
The aim of this study was to propose an integrated approach in which genetic effect sizes are estimated simultaneously with the PK model parameters, which should improve the estimate precision and reduce sensitivity to study design.
A total of 200 data sets were simulated under the null and each of the following three alternative scenarios: (i) a phase II study with N=300 participants and n=6 sampling times, wherein six unobserved causal variants affect the drug elimination clearance; (ii) the addition of participants with a residual concentration collected in clinical routine (N=300, n=6 plus N=700, n=1); and (iii) a phase II study (N=300, n=6) in which four unobserved causal variants affect two different model parameters.
In all scenarios the integrated approach detected fewer false positives. In scenario (i), true-positive rates were low and the stepwise procedure outperformed the integrated approach. In scenario (ii), approaches performed similarly and rates were higher. In scenario (iii), the integrated approach outperformed the stepwise procedure.
A PK phase II study with N=300 lacks the power to detect genetic effects on PK using genetic arrays. Our approach can simultaneously analyse phase II and clinical routine data and identify when genetic variants affect multiple PK parameters.
在之前的一项研究中,我们已经表明,惩罚回归方法能够以一种计算和统计效率兼具的方式,将许多基因变异纳入复杂的药代动力学(PK)模型。表型为个体模型参数估计值,是在模型拟合后验得到的,并且已知对研究设计敏感。
本研究的目的是提出一种综合方法,在该方法中,基因效应大小与PK模型参数同时进行估计,这有望提高估计精度并降低对研究设计的敏感性。
在无效假设以及以下三种替代情景下分别模拟了总共200个数据集:(i)一项II期研究,有N = 300名参与者和n = 6个采样时间点,其中六个未观察到的因果变异影响药物消除清除率;(ii)增加在临床常规中收集了残留浓度的参与者(N = 300,n = 6加上N = 700,n = 1);以及(iii)一项II期研究(N = 300,n = 6),其中四个未观察到的因果变异影响两个不同的模型参数。
在所有情景中,综合方法检测到的假阳性较少。在情景(i)中,真阳性率较低,逐步程序优于综合方法。在情景(ii)中,两种方法表现相似且率更高。在情景(iii)中,综合方法优于逐步程序。
一项有N = 300名参与者的PK II期研究缺乏使用基因阵列检测基因对PK影响的能力。我们的方法可以同时分析II期和临床常规数据,并识别基因变异何时影响多个PK参数。