Suppr超能文献

具有正、负 $\tau$ 值的针式支持向量机分类器的解决方案路径。

Solution Path for Pin-SVM Classifiers With Positive and Negative $\tau $ Values.

出版信息

IEEE Trans Neural Netw Learn Syst. 2017 Jul;28(7):1584-1593. doi: 10.1109/TNNLS.2016.2547324. Epub 2016 Apr 8.

Abstract

Applying the pinball loss in a support vector machine (SVM) classifier results in pin-SVM. The pinball loss is characterized by a parameter τ . Its value is related to the quantile level and different τ values are suitable for different problems. In this paper, we establish an algorithm to find the entire solution path for pin-SVM with different τ values. This algorithm is based on the fact that the optimal solution to pin-SVM is continuous and piecewise linear with respect to τ . We also show that the nonnegativity constraint on τ is not necessary, i.e., τ can be extended to negative values. First, in some applications, a negative τ leads to better accuracy. Second, τ = -1 corresponds to a simple solution that links SVM and the classical kernel rule. The solution for τ = -1 can be obtained directly and then be used as a starting point of the solution path. The proposed method efficiently traverses τ values through the solution path, and then achieves good performance by a suitable τ . In particular, τ = 0 corresponds to C-SVM, meaning that the traversal algorithm can output a result at least as good as C-SVM with respect to validation error.

摘要

在支持向量机 (SVM) 分类器中应用弹球损失会得到针球 SVM。针球损失的特点是参数 τ。它的值与分位数水平有关,不同的 τ 值适用于不同的问题。在本文中,我们建立了一种算法,用于找到具有不同 τ 值的针球 SVM 的整个解路径。该算法基于针球 SVM 的最优解是连续的和分段线性的 τ 的事实。我们还表明,τ 的非负约束不是必需的,即 τ 可以扩展到负值。首先,在某些应用中,负 τ 会导致更好的准确性。其次,τ = -1 对应于一种简单的解决方案,它将 SVM 和经典核规则联系起来。τ = -1 的解可以直接得到,然后作为解路径的起点。所提出的方法通过解路径有效地遍历 τ 值,然后通过合适的 τ 获得良好的性能。特别是,τ = 0 对应于 C-SVM,这意味着遍历算法在验证误差方面至少可以输出与 C-SVM 一样好的结果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验