Suppr超能文献

改进抑制肌动蛋白丝交联蛋白的药物以阻断肿瘤细胞迁移和转移。

Improving fascin inhibitors to block tumor cell migration and metastasis.

作者信息

Han Shaoqin, Huang Jianyun, Liu Bingqian, Xing Bowen, Bordeleau Francois, Reinhart-King Cynthia A, Li Wenxin, Zhang J Jillian, Huang Xin-Yun

机构信息

College of Life Sciences, Wuhan University, Wuhan, China; Department of Physiology and Biophysics, Cornell University, Weill Medical College, New York, NY 10065, USA.

Department of Physiology and Biophysics, Cornell University, Weill Medical College, New York, NY 10065, USA.

出版信息

Mol Oncol. 2016 Aug;10(7):966-80. doi: 10.1016/j.molonc.2016.03.006. Epub 2016 Apr 1.

Abstract

Tumor metastasis is the major cause of mortality of cancer patients, being responsible for ∼90% of all cancer deaths. One of the key steps during tumor metastasis is tumor cell migration which requires actin cytoskeletal reorganization. Among the critical actin cytoskeletal protrusion structures are antenna-like filopodia. Fascin protein is the main actin-bundling protein in filopodia. Here we report the development of fascin-specific small-molecules that inhibit the interaction between fascin and actin. These inhibitors block the in vitro actin-binding and actin-bundling activities of fascin, tumor cell migration and tumor metastasis in mouse models. Mechanistically, these inhibitors likely occupy one of the actin-binding sites, reduce the binding of actin filaments, and thus lead to the inhibition of the bundling activity of fascin. At the cellular level, these inhibitors impair actin cytoskeletal reorganization. Our data indicate that target-specific anti-fascin agents will have great potential for treating metastatic tumors.

摘要

肿瘤转移是癌症患者死亡的主要原因,约占所有癌症死亡人数的90%。肿瘤转移过程中的关键步骤之一是肿瘤细胞迁移,这需要肌动蛋白细胞骨架的重组。在关键的肌动蛋白细胞骨架突出结构中,有天线样丝状伪足。Fascin蛋白是丝状伪足中主要的肌动蛋白捆绑蛋白。在此,我们报告了抑制Fascin与肌动蛋白相互作用的Fascin特异性小分子的研发情况。这些抑制剂在小鼠模型中阻断了Fascin的体外肌动蛋白结合和肌动蛋白捆绑活性、肿瘤细胞迁移及肿瘤转移。从机制上讲,这些抑制剂可能占据了一个肌动蛋白结合位点,减少了肌动蛋白丝的结合,从而导致Fascin捆绑活性的抑制。在细胞水平上,这些抑制剂损害了肌动蛋白细胞骨架的重组。我们的数据表明,靶向特异性抗Fascin药物在治疗转移性肿瘤方面具有巨大潜力。

相似文献

1
Improving fascin inhibitors to block tumor cell migration and metastasis.
Mol Oncol. 2016 Aug;10(7):966-80. doi: 10.1016/j.molonc.2016.03.006. Epub 2016 Apr 1.
3
Structural Insights into the Induced-fit Inhibition of Fascin by a Small-Molecule Inhibitor.
J Mol Biol. 2018 Apr 27;430(9):1324-1335. doi: 10.1016/j.jmb.2018.03.009. Epub 2018 Mar 21.
4
Mechanism of actin filament bundling by fascin.
J Biol Chem. 2011 Aug 26;286(34):30087-96. doi: 10.1074/jbc.M111.251439. Epub 2011 Jun 18.
5
Role of fascin in filopodial protrusion.
J Cell Biol. 2006 Sep 11;174(6):863-75. doi: 10.1083/jcb.200603013.
6
Inhibition of fascin in cancer and stromal cells blocks ovarian cancer metastasis.
Gynecol Oncol. 2019 May;153(2):405-415. doi: 10.1016/j.ygyno.2019.01.020. Epub 2019 Feb 20.
7
Migrastatin analogues target fascin to block tumour metastasis.
Nature. 2010 Apr 15;464(7291):1062-6. doi: 10.1038/nature08978.
9
The post-translational modification of Fascin: impact on cell biology and its associations with inhibiting tumor metastasis.
Amino Acids. 2022 Dec;54(12):1541-1552. doi: 10.1007/s00726-022-03193-x. Epub 2022 Aug 8.
10
Filopodia formation by crosslinking of F-actin with fascin in two different binding manners.
Cytoskeleton (Hoboken). 2016 Jun;73(7):365-74. doi: 10.1002/cm.21309. Epub 2016 Jun 13.

引用本文的文献

2
Fascin structural plasticity mediates flexible actin bundle construction.
Nat Struct Mol Biol. 2025 May;32(5):940-952. doi: 10.1038/s41594-024-01477-2. Epub 2025 Jan 20.
3
A nanobody inhibitor of Fascin-1 actin-bundling activity and filopodia formation.
Open Biol. 2024 Mar;14(3):230376. doi: 10.1098/rsob.230376. Epub 2024 Mar 20.
4
Fascin structural plasticity mediates flexible actin bundle construction.
bioRxiv. 2024 Feb 10:2024.01.03.574123. doi: 10.1101/2024.01.03.574123.
5
Impact of actin polymerization and filopodia formation on herpes simplex virus entry in epithelial, neuronal, and T lymphocyte cells.
Front Cell Infect Microbiol. 2023 Nov 24;13:1301859. doi: 10.3389/fcimb.2023.1301859. eCollection 2023.
6
Targeting FSCN1 with an oral small-molecule inhibitor for treating ocular neovascularization.
J Transl Med. 2023 Aug 18;21(1):555. doi: 10.1186/s12967-023-04225-0.
8
Fascin-1 in Cancer Cell Metastasis: Old Target-New Insights.
Int J Mol Sci. 2023 Jul 8;24(14):11253. doi: 10.3390/ijms241411253.
9
The Role of Fascin-1 in Human Urologic Cancers: A Promising Biomarker or Therapeutic Target?
Technol Cancer Res Treat. 2023 Jan-Dec;22:15330338231175733. doi: 10.1177/15330338231175733.
10
Lactate-mediated Fascin protrusions promote cell adhesion and migration in cervical cancer.
Theranostics. 2023 Apr 17;13(7):2368-2383. doi: 10.7150/thno.83938. eCollection 2023.

本文引用的文献

1
A spatial model predicts that dispersal and cell turnover limit intratumour heterogeneity.
Nature. 2015 Sep 10;525(7568):261-4. doi: 10.1038/nature14971. Epub 2015 Aug 26.
4
F-actin bundles direct the initiation and orientation of lamellipodia through adhesion-based signaling.
J Cell Biol. 2015 Feb 16;208(4):443-55. doi: 10.1083/jcb.201406102. Epub 2015 Feb 9.
5
Conditional expression of fascin increases tumor progression in a mouse model of intestinal cancer.
Eur J Cell Biol. 2014 Oct;93(10-12):388-95. doi: 10.1016/j.ejcb.2014.08.002. Epub 2014 Sep 16.
6
Fascin plays a role in stress fiber organization and focal adhesion disassembly.
Curr Biol. 2014 Jul 7;24(13):1492-9. doi: 10.1016/j.cub.2014.05.023. Epub 2014 Jun 12.
7
Fascin is regulated by slug, promotes progression of pancreatic cancer in mice, and is associated with patient outcomes.
Gastroenterology. 2014 May;146(5):1386-96.e1-17. doi: 10.1053/j.gastro.2014.01.046. Epub 2014 Jan 23.
8
Prognostic biomarkers in patients with resected cholangiocarcinoma: a systematic review and meta-analysis.
Ann Surg Oncol. 2014 Feb;21(2):487-500. doi: 10.1245/s10434-013-3286-x. Epub 2013 Oct 1.
9
Serological investigation of the clinical significance of fascin in non-small-cell lung cancer.
Lung Cancer. 2013 Nov;82(2):346-52. doi: 10.1016/j.lungcan.2013.08.017. Epub 2013 Sep 5.
10
Specialized filopodia direct long-range transport of SHH during vertebrate tissue patterning.
Nature. 2013 May 30;497(7451):628-32. doi: 10.1038/nature12157. Epub 2013 Apr 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验