Suppr超能文献

基于全身炎症反应综合征的急诊科疑似脓毒症患者严重脓毒症筛查算法

Systemic inflammatory response syndrome-based severe sepsis screening algorithms in emergency department patients with suspected sepsis.

作者信息

Shetty Amith L, Brown Tristam, Booth Tarra, Van Kim Linh, Dor-Shiffer Daphna E, Vaghasiya Milan R, Eccleston Cassanne E, Iredell Jonathan

机构信息

Westmead Hospital Emergency Department, Westmead Hospital, Sydney, New South Wales, Australia.

NHMRC Centre for Research Excellence in Critical Infection, Westmead Millennium Institute, Sydney, New South Wales, Australia.

出版信息

Emerg Med Australas. 2016 Jun;28(3):287-94. doi: 10.1111/1742-6723.12578. Epub 2016 Apr 12.

Abstract

OBJECTIVE

Systemic inflammatory response syndrome (SIRS)-based severe sepsis screening algorithms have been utilised in stratification and initiation of early broad spectrum antibiotics for patients presenting to EDs with suspected sepsis. We aimed to investigate the performance of some of these algorithms on a cohort of suspected sepsis patients.

METHODS

We conducted a retrospective analysis on an ED-based prospective sepsis registry at a tertiary Sydney hospital, Australia. Definitions for sepsis were based on the 2012 Surviving Sepsis Campaign guidelines. Numerical values for SIRS criteria and ED investigation results were recorded at the trigger of sepsis pathway on the registry. Performance of specific SIRS-based screening algorithms at sites from USA, Canada, UK, Australia and Ireland health institutions were investigated.

RESULTS

Severe sepsis screening algorithms' performance was measured on 747 patients presenting with suspected sepsis (401 with severe sepsis, prevalence 53.7%). Sensitivity and specificity of algorithms to flag severe sepsis ranged from 20.2% (95% CI 16.4-24.5%) to 82.3% (95% CI 78.2-85.9%) and 57.8% (95% CI 52.4-63.1%) to 94.8% (95% CI 91.9-96.9%), respectively. Variations in SIRS values between uncomplicated and severe sepsis cohorts were only minor, except a higher mean lactate (>1.6 mmol/L, P < 0.01).

CONCLUSIONS

We found the Ireland and JFK Medical Center sepsis algorithms performed modestly in stratifying suspected sepsis patients into high-risk groups. Algorithms with lactate levels thresholds of >2 mmol/L rather than >4 mmol/L performed better. ED sepsis registry-based characterisation of patients may help further refine sepsis definitions of the future.

摘要

目的

基于全身炎症反应综合征(SIRS)的严重脓毒症筛查算法已被用于对疑似脓毒症且前往急诊科就诊的患者进行分层,并启动早期广谱抗生素治疗。我们旨在研究其中一些算法在一组疑似脓毒症患者中的表现。

方法

我们对澳大利亚悉尼一家三级医院基于急诊科的前瞻性脓毒症登记处进行了回顾性分析。脓毒症的定义基于2012年拯救脓毒症运动指南。在登记处启动脓毒症诊疗流程时记录SIRS标准的数值和急诊科检查结果。研究了来自美国、加拿大、英国、澳大利亚和爱尔兰医疗机构的特定基于SIRS的筛查算法的表现。

结果

对747例疑似脓毒症患者(401例为严重脓毒症,患病率53.7%)评估了严重脓毒症筛查算法的表现。算法识别严重脓毒症的敏感性和特异性分别为20.2%(95%CI 16.4 - 24.5%)至82.3%(95%CI 78.2 - 85.9%)以及57.8%(95%CI 52.4 - 63.1%)至94.8%(95%CI 91.9 - 96.9%)。除了较高的平均乳酸水平(>1.6 mmol/L,P < 0.01)外,非复杂性和严重脓毒症队列之间SIRS值的差异仅为轻微差异。

结论

我们发现爱尔兰和肯尼迪医疗中心的脓毒症算法在将疑似脓毒症患者分层为高危组方面表现一般。乳酸水平阈值为>2 mmol/L而非>4 mmol/L的算法表现更好。基于急诊科脓毒症登记处对患者进行特征描述可能有助于进一步完善未来的脓毒症定义。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验