Samuelson P A
Proc Natl Acad Sci U S A. 1977 Nov;74(11):5189-92. doi: 10.1073/pnas.74.11.5189.
R. A. Fisher's 1930 "reproductive value" is defined as the contribution made by a population's initial age elements to its asymptotically dominating exponential growth mode. For the Leslie discrete-time model, it is the characteristic row vector of the Leslie matrix, and for the integral-equation model of Lotka the similar eigenfunction. It generalizes neatly to a 2-sex model of linear differential equations, and to general n-variable linear systems. However, when resource limitations end the "dilute" stage of linearity, reproductive value loses positive definability. The present linear analysis prepares the way for generalizing reproductive value to nonlinear systems involving first-degree-homogeneous relationships.
R. A. 费希尔1930年提出的“繁殖价值”被定义为种群初始年龄组元对其渐近主导的指数增长模式所做的贡献。对于莱斯利离散时间模型,它是莱斯利矩阵的特征行向量,而对于洛特卡积分方程模型则是类似的特征函数。它可以很自然地推广到线性微分方程的两性模型以及一般的n变量线性系统。然而,当资源限制结束线性的“稀释”阶段时,繁殖价值失去了正定性。目前的线性分析为将繁殖价值推广到涉及一阶齐次关系的非线性系统奠定了基础。