Suppr超能文献

面向具有年龄结构的群体的复制动力学模型。

Towards a replicator dynamics model of age structured populations.

机构信息

Institute of Mathematics of Polish Academy of Sciences, ul. Śniadeckich 8, 00-656, Warsaw, Poland.

Department of Mathematics, University of Sussex, Brighton, BN1 9QH, UK.

出版信息

J Math Biol. 2021 Apr 2;82(5):44. doi: 10.1007/s00285-021-01592-4.

Abstract

We present a new modelling framework combining replicator dynamics, the standard model of frequency dependent selection, with an age-structured population model. The new framework allows for the modelling of populations consisting of competing strategies carried by individuals who change across their life cycle. Firstly the discretization of the McKendrick von Foerster model is derived. We show that the Euler-Lotka equation is satisfied when the new model reaches a steady state (i.e. stable frequencies between the age classes). This discretization consists of unit age classes where the timescale is chosen so that only a fraction of individuals play a single game round. This implies a linear dynamics and individuals not killed during the round are moved to the next age class; linearity means that the system is equivalent to a large Bernadelli-Lewis-Leslie matrix. Then we use the methodology of multipopulation games to derive two, mutually equivalent systems of equations. The first contains equations describing the evolution of the strategy frequencies in the whole population, completed by subsystems of equations describing the evolution of the age structure for each strategy. The second contains equations describing the changes of the general population's age structure, completed with subsystems of equations describing the selection of the strategies within each age class. We then present the obtained system of replicator dynamics in the form of the mixed ODE-PDE system which is independent of the chosen timescale, and much simpler. The obtained results are illustrated by the example of the sex ratio model which shows that when different mortalities of the sexes are assumed, the sex ratio of 0.5 is obtained but that Fisher's mechanism, driven by the reproductive value of the different sexes, is not in equilibrium.

摘要

我们提出了一个新的建模框架,将复制动力学与基于频率的选择的标准模型相结合,并结合了年龄结构的人口模型。新框架允许对由个体携带的竞争策略组成的群体进行建模,这些个体在其生命周期中会发生变化。首先推导出 McKendrick von Foerster 模型的离散化。我们表明,当新模型达到稳定状态(即年龄类之间的稳定频率)时,满足 Euler-Lotka 方程。这种离散化由单位年龄类组成,其中时间尺度选择为只有一部分个体进行一轮单个游戏。这意味着线性动力学,并且在回合中未被杀死的个体将被转移到下一个年龄类;线性意味着系统相当于一个大型 Bernadelli-Lewis-Leslie 矩阵。然后,我们使用多群体博弈的方法推导出两个相互等价的方程组。第一个包含描述整个种群中策略频率演变的方程,通过描述每个策略的年龄结构演变的子系统来完成。第二个包含描述总人口年龄结构变化的方程,通过描述每个年龄类中策略选择的子系统来完成。然后,我们以与所选时间尺度无关且简单得多的混合 ODE-PDE 系统的形式呈现获得的复制动力学系统。通过性别比例模型的示例说明了获得的结果,该模型表明,当假设不同性别的死亡率时,可以得到性别比例为 0.5,但由不同性别的生殖价值驱动的 Fisher 机制并不处于平衡状态。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0eb4/8018938/d02e29755393/285_2021_1592_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验