Suppr超能文献

基于时间序列模型的光谱噪声估计的多光谱光声成像伪影去除和去噪。

Multispectral Photoacoustic Imaging Artifact Removal and Denoising Using Time Series Model-Based Spectral Noise Estimation.

出版信息

IEEE Trans Med Imaging. 2016 Sep;35(9):2151-2163. doi: 10.1109/TMI.2016.2550624. Epub 2016 Apr 5.

Abstract

The aim of this study is to solve a problem of denoising and artifact removal from in vivo multispectral photoacoustic imaging when the level of noise is not known a priori. The study analyzes Wiener filtering in Fourier domain when a family of anisotropic shape filters is considered. The unknown noise and signal power spectral densities are estimated using spectral information of images and the autoregressive of the power 1 ( AR(1)) model. Edge preservation is achieved by detecting image edges in the original and the denoised image and superimposing a weighted contribution of the two edge images to the resulting denoised image. The method is tested on multispectral photoacoustic images from simulations, a tissue-mimicking phantom, as well as in vivo imaging of the mouse, with its performance compared against that of the standard Wiener filtering in Fourier domain. The results reveal better denoising and fine details preservation capabilities of the proposed method when compared to that of the standard Wiener filtering in Fourier domain, suggesting that this could be a useful denoising technique for other multispectral photoacoustic studies.

摘要

本研究旨在解决当噪声水平未知先验时从体内多光谱光声成像中去除噪声和伪影的问题。该研究分析了在考虑各向异性形状滤波器族时,傅里叶域中的维纳滤波。使用图像的光谱信息和自回归功率 1(AR(1))模型来估计未知的噪声和信号功率谱密度。通过在原始图像和去噪图像中检测图像边缘,并将两个边缘图像的加权贡献叠加到最终的去噪图像中,实现边缘保持。该方法在模拟的多光谱光声图像、组织模拟体模以及活体小鼠成像上进行了测试,并将其性能与傅里叶域中的标准维纳滤波进行了比较。结果表明,与傅里叶域中的标准维纳滤波相比,该方法具有更好的去噪和精细细节保持能力,这表明这可能是其他多光谱光声研究的一种有用的去噪技术。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验