Suppr超能文献

用于提取细菌和栖息地分类法的机器阅读

Machine Reading for Extraction of Bacteria and Habitat Taxonomies.

作者信息

Kordjamshidi Parisa, Massa Wouter, Provoost Thomas, Moens Marie-Francine

机构信息

Department of Computer Science, University of Illinois at Urbana-Champaign, 201 North Goodwin Avenue, 61801-2302, Urbana, IL, U.S.A., Department of Computer Science, KU Leuven, Celestijnenlaan 200A, 3001, Heverlee, Belgium.

出版信息

Biomed Eng Syst Technol Int Jt Conf BIOSTEC Revis Sel Pap. 2015 Jan;574:239-255. doi: 10.1007/978-3-319-27707-3_15. Epub 2016 Jan 5.

Abstract

There is a vast amount of scientific literature available from various resources such as the internet. Automating the extraction of knowledge from these resources is very helpful for biologists to easily access this information. This paper presents a system to extract the bacteria and their habitats, as well as the relations between them. We investigate to what extent current techniques are suited for this task and test a variety of models in this regard. We detect entities in a biological text and map the habitats into a given taxonomy. Our model uses a linear chain Conditional Random Field (CRF). For the prediction of relations between the entities, a model based on logistic regression is built. Designing a system upon these techniques, we explore several improvements for both the generation and selection of good candidates. One contribution to this lies in the extended exibility of our ontology mapper that uses an advanced boundary detection and assigns the taxonomy elements to the detected habitats. Furthermore, we discover value in the combination of several distinct candidate generation rules. Using these techniques, we show results that are significantly improving upon the state of art for the BioNLP Bacteria Biotopes task.

摘要

有大量来自互联网等各种资源的科学文献。从这些资源中自动提取知识对生物学家轻松获取这些信息非常有帮助。本文提出了一个用于提取细菌及其栖息地以及它们之间关系的系统。我们研究了当前技术在多大程度上适用于此任务,并在这方面测试了各种模型。我们在生物文本中检测实体,并将栖息地映射到给定的分类法中。我们的模型使用线性链条件随机场(CRF)。为了预测实体之间的关系,构建了一个基于逻辑回归的模型。基于这些技术设计一个系统,我们探索了对良好候选者的生成和选择的几种改进。对此的一个贡献在于我们的本体映射器具有扩展的灵活性,它使用先进的边界检测并将分类法元素分配给检测到的栖息地。此外,我们发现了几种不同候选者生成规则组合的价值。使用这些技术,我们展示的结果显著优于生物自然语言处理(BioNLP)细菌生物群落任务的现有技术水平。

相似文献

1
Machine Reading for Extraction of Bacteria and Habitat Taxonomies.用于提取细菌和栖息地分类法的机器阅读
Biomed Eng Syst Technol Int Jt Conf BIOSTEC Revis Sel Pap. 2015 Jan;574:239-255. doi: 10.1007/978-3-319-27707-3_15. Epub 2016 Jan 5.
2
Detection and categorization of bacteria habitats using shallow linguistic analysis.利用浅层语言分析检测和分类细菌栖息地
BMC Bioinformatics. 2015;16 Suppl 10(Suppl 10):S5. doi: 10.1186/1471-2105-16-S10-S5. Epub 2015 Jul 13.
6
Sieve-based relation extraction of gene regulatory networks from biological literature.基于筛法从生物学文献中提取基因调控网络关系
BMC Bioinformatics. 2015;16 Suppl 16(Suppl 16):S1. doi: 10.1186/1471-2105-16-S16-S1. Epub 2015 Oct 30.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验