Deng Yuchen, Chen Yu, Zhang Yan, Wang Shengliu, Zhang Fa, Sun Fei
National Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing, China.
Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing, China.
J Struct Biol. 2016 Jul;195(1):100-12. doi: 10.1016/j.jsb.2016.04.004. Epub 2016 Apr 11.
Electron tomography (ET) plays an important role in revealing biological structures, ranging from macromolecular to subcellular scale. Due to limited tilt angles, ET reconstruction always suffers from the 'missing wedge' artifacts, thus severely weakens the further biological interpretation. In this work, we developed an algorithm called Iterative Compressed-sensing Optimized Non-uniform fast Fourier transform reconstruction (ICON) based on the theory of compressed-sensing and the assumption of sparsity of biological specimens. ICON can significantly restore the missing information in comparison with other reconstruction algorithms. More importantly, we used the leave-one-out method to verify the validity of restored information for both simulated and experimental data. The significant improvement in sub-tomogram averaging by ICON indicates its great potential in the future application of high-resolution structural determination of macromolecules in situ.
电子断层扫描(ET)在揭示从大分子到亚细胞尺度的生物结构方面发挥着重要作用。由于倾斜角度有限,ET重建总是受到“缺失楔形”伪影的影响,从而严重削弱了进一步的生物学解释。在这项工作中,我们基于压缩感知理论和生物样本稀疏性假设,开发了一种名为迭代压缩感知优化非均匀快速傅里叶变换重建(ICON)的算法。与其他重建算法相比,ICON可以显著恢复缺失的信息。更重要的是,我们使用留一法来验证模拟数据和实验数据中恢复信息的有效性。ICON在亚断层平均方面的显著改进表明其在未来原位大分子高分辨率结构测定应用中的巨大潜力。