Suppr超能文献

遗忘型轻度认知障碍亚型中阿尔茨海默病的预测:基于影像生物标志物的分层

Prediction of Alzheimer's Disease in Amnestic Mild Cognitive Impairment Subtypes: Stratification Based on Imaging Biomarkers.

作者信息

Ota Kenichi, Oishi Naoya, Ito Kengo, Fukuyama Hidenao

机构信息

Human Brain Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan.

Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan.

出版信息

J Alzheimers Dis. 2016 Apr 12;52(4):1385-401. doi: 10.3233/JAD-160145.

Abstract

BACKGROUND

Prediction of progression to Alzheimer's disease (AD) in amnestic mild cognitive impairment (MCI) is challenging because of its heterogeneity.

OBJECTIVE

To evaluate a stratification method on different cohorts and to investigate whether stratification in amnestic MCI could improve prediction accuracy.

METHODS

We identified 80 and 79 patients with amnestic MCI from different cohorts, respectively. They underwent baseline magnetic resonance imaging (MRI) and 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) scans. We performed hierarchical clustering with three imaging biomarkers: Brain volume on MRI, left hippocampus grey matter loss on MRI, and left inferior temporal gyrus glucose hypometabolism on FDG-PET. Regions-of-interest for biomarkers were defined by the Automated Anatomical Labeling atlas. We performed voxel-wise statistical parametric mapping to explore differences between clusters in patterns of grey matter loss and glucose hypometabolism. We compared time to progression using an interval-censored parametric model. We evaluated predictive performance using logistic regression.

RESULTS

Similar clusters were found in different cohorts. MCI1 had the healthiest biomarker profile of cognitive performance and imaging biomarkers. MCI2 had cognitive performance and MRI measures intermediate between those of nonconverters and converters. MCI3 showed the severest reduction in brain volume and left hippocampal atrophy. MCI4 showed remarkable glucose hypometabolism in the left inferior temporal gyrus, and also demonstrated significant decreases in most cognitive scores, including non-memory functions. MCI4 showed the highest risk for progression. The prediction of progression of MCI2 especially benefited from the stratification.

CONCLUSION

Stratification with imaging biomarkers in amnestic MCI can be a good approach for improving predictive performance.

摘要

背景

由于遗忘型轻度认知障碍(MCI)的异质性,预测其进展为阿尔茨海默病(AD)具有挑战性。

目的

评估一种针对不同队列的分层方法,并研究遗忘型MCI的分层是否能提高预测准确性。

方法

我们分别从不同队列中确定了80例和79例遗忘型MCI患者。他们接受了基线磁共振成像(MRI)和18F-氟脱氧葡萄糖(FDG)正电子发射断层扫描(PET)。我们使用三种成像生物标志物进行层次聚类:MRI上的脑体积、MRI上左侧海马灰质损失以及FDG-PET上左侧颞下回葡萄糖低代谢。生物标志物的感兴趣区域由自动解剖标记图谱定义。我们进行了体素级统计参数映射,以探索聚类之间灰质损失和葡萄糖低代谢模式的差异。我们使用区间删失参数模型比较进展时间。我们使用逻辑回归评估预测性能。

结果

在不同队列中发现了相似的聚类。MCI1具有最健康的认知表现和成像生物标志物特征。MCI2的认知表现和MRI测量值介于未转化者和转化者之间。MCI3显示出最严重的脑体积减少和左侧海马萎缩。MCI4在左侧颞下回显示出明显的葡萄糖低代谢,并且在包括非记忆功能在内的大多数认知评分中也显著下降。MCI4显示出最高的进展风险。MCI2进展的预测尤其受益于分层。

结论

使用成像生物标志物对遗忘型MCI进行分层可能是提高预测性能的一种好方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验