Suppr超能文献

微小RNA与高密度脂蛋白代谢

Micro-RNAs and High-Density Lipoprotein Metabolism.

作者信息

Canfrán-Duque Alberto, Lin Chin-Sheng, Goedeke Leigh, Suárez Yajaira, Fernández-Hernando Carlos

机构信息

From the Vascular Biology and Therapeutics Program (A.C.-D., L.G., Y.S., C.F.-H.) and Integrative Cell Signaling and Neurobiology of Metabolism Program, Section of Comparative Medicine and Department of Pathology (A.C.-D., L.G., Y.S., C.F.-H.), Yale University School of Medicine, New Haven, CT; and Division of Cardiology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan (C.-S.L.).

出版信息

Arterioscler Thromb Vasc Biol. 2016 Jun;36(6):1076-84. doi: 10.1161/ATVBAHA.116.307028. Epub 2016 Apr 14.

Abstract

Improved prevention and treatment of cardiovascular diseases is one of the challenges in Western societies, where ischemic heart disease and stroke are the leading cause of death. Early epidemiological studies have shown an inverse correlation between circulating high-density lipoprotein-cholesterol (HDL-C) and cardiovascular diseases. The cardioprotective effect of HDL is because of its ability to remove cholesterol from plaques in the artery wall to the liver for excretion by a process known as reverse cholesterol transport. Numerous studies have reported the role that micro-RNAs (miRNA) play in the regulation of the different steps in reverse cholesterol transport, including HDL biogenesis, cholesterol efflux, and cholesterol uptake in the liver and bile acid synthesis and secretion. Because of their ability to control different aspects of HDL metabolism and function, miRNAs have emerged as potential therapeutic targets to combat cardiovascular diseases. In this review, we summarize the recent advances in the miRNA-mediated control of HDL metabolism. We also discuss how HDL particles serve as carriers of miRNAs and the potential use of HDL-containing miRNAs as cardiovascular diseases biomarkers.

摘要

改善心血管疾病的预防和治疗是西方社会面临的挑战之一,在这些社会中,缺血性心脏病和中风是主要死因。早期的流行病学研究表明,循环中的高密度脂蛋白胆固醇(HDL-C)与心血管疾病之间存在负相关。HDL的心脏保护作用源于其通过一种称为逆向胆固醇转运的过程将动脉壁斑块中的胆固醇转运至肝脏进行排泄的能力。大量研究报道了微小RNA(miRNA)在逆向胆固醇转运不同步骤的调控中所起的作用,包括HDL生物合成、胆固醇流出、肝脏中的胆固醇摄取以及胆汁酸合成与分泌。由于miRNA能够控制HDL代谢和功能的不同方面,它们已成为对抗心血管疾病的潜在治疗靶点。在本综述中,我们总结了miRNA介导的HDL代谢调控的最新进展。我们还讨论了HDL颗粒如何作为miRNA的载体,以及含HDL的miRNA作为心血管疾病生物标志物的潜在用途。

相似文献

1
Micro-RNAs and High-Density Lipoprotein Metabolism.
Arterioscler Thromb Vasc Biol. 2016 Jun;36(6):1076-84. doi: 10.1161/ATVBAHA.116.307028. Epub 2016 Apr 14.
2
microRNAs and HDL life cycle.
Cardiovasc Res. 2014 Aug 1;103(3):414-22. doi: 10.1093/cvr/cvu140. Epub 2014 Jun 3.
4
High-density Lipoprotein (HDL) Dysfunction and the Future of HDL.
Curr Vasc Pharmacol. 2018;16(5):490-498. doi: 10.2174/1570161115666171116164612.
5
miRNAs and High-Density Lipoprotein metabolism.
Biochim Biophys Acta. 2016 Dec;1861(12 Pt B):2053-2061. doi: 10.1016/j.bbalip.2016.01.021. Epub 2016 Feb 9.
6
The role of microRNAs in cholesterol efflux and hepatic lipid metabolism.
Annu Rev Nutr. 2011 Aug 21;31:49-63. doi: 10.1146/annurev-nutr-081810-160756.
7
High-density lipoproteins in the prevention of cardiovascular disease: changing the paradigm.
Clin Pharmacol Ther. 2014 Jul;96(1):48-56. doi: 10.1038/clpt.2014.79. Epub 2014 Apr 8.
8
MicroRNA control of high-density lipoprotein metabolism and function.
Circ Res. 2014 Jan 3;114(1):183-92. doi: 10.1161/CIRCRESAHA.114.300645.
9
Revisiting Reverse Cholesterol Transport in the Context of High-Density Lipoprotein Free Cholesterol Bioavailability.
Methodist Debakey Cardiovasc J. 2019 Jan-Mar;15(1):47-54. doi: 10.14797/mdcj-15-1-47.
10
microRNAs in lipoprotein and lipid metabolism: from biological function to clinical application.
Clin Chem Lab Med. 2017 May 1;55(5):667-686. doi: 10.1515/cclm-2016-0575.

引用本文的文献

2
3
Effect of Exercise on Regulating miRNA Expression in Brain Health and Diseases.
Biology (Basel). 2025 Jun 19;14(6):729. doi: 10.3390/biology14060729.
6
MicroRNA 223 Enhances ABCA1 Protein Stability and Supports Efflux in Cholesterol-Burdened Macrophages.
Cell Biochem Biophys. 2025 Jun;83(2):1943-1954. doi: 10.1007/s12013-024-01603-3. Epub 2024 Nov 14.
8
Inhibition of miR-33a-5p in Macrophage-like Cells In Vitro Promotes apoAI-Mediated Cholesterol Efflux.
Pathophysiology. 2024 Feb 28;31(1):117-126. doi: 10.3390/pathophysiology31010009.
9
The Link between miRNAs and PCKS9 in Atherosclerosis.
Curr Med Chem. 2024;31(42):6926-6956. doi: 10.2174/0109298673262124231102042914.
10
Nanodiscoidal Nucleic Acids for Gene Regulation.
ACS Chem Biol. 2023 Nov 17;18(11):2349-2367. doi: 10.1021/acschembio.3c00038. Epub 2023 Nov 1.

本文引用的文献

1
Lipoprotein carriers of microRNAs.
Biochim Biophys Acta. 2016 Dec;1861(12 Pt B):2069-2074. doi: 10.1016/j.bbalip.2016.01.011. Epub 2016 Jan 26.
2
MicroRNA transport in cardiovascular complication of diabetes.
Biochim Biophys Acta. 2016 Dec;1861(12 Pt B):2111-2120. doi: 10.1016/j.bbalip.2016.01.010. Epub 2016 Jan 20.
3
miR-27b inhibits LDLR and ABCA1 expression but does not influence plasma and hepatic lipid levels in mice.
Atherosclerosis. 2015 Dec;243(2):499-509. doi: 10.1016/j.atherosclerosis.2015.09.033.
5
Genome-wide identification of microRNAs regulating cholesterol and triglyceride homeostasis.
Nat Med. 2015 Nov;21(11):1290-7. doi: 10.1038/nm.3980. Epub 2015 Oct 26.
6
MiR-486 and miR-92a Identified in Circulating HDL Discriminate between Stable and Vulnerable Coronary Artery Disease Patients.
PLoS One. 2015 Oct 20;10(10):e0140958. doi: 10.1371/journal.pone.0140958. eCollection 2015.
7
MicroRNA-148a regulates LDL receptor and ABCA1 expression to control circulating lipoprotein levels.
Nat Med. 2015 Nov;21(11):1280-9. doi: 10.1038/nm.3949. Epub 2015 Oct 5.
9
Macrophage Mitochondrial Energy Status Regulates Cholesterol Efflux and Is Enhanced by Anti-miR33 in Atherosclerosis.
Circ Res. 2015 Jul 17;117(3):266-78. doi: 10.1161/CIRCRESAHA.117.305624. Epub 2015 May 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验