Suppr超能文献

凝聚性和并发率对流行潜力的相互依存效应。

Interdependent effects of cohesion and concurrency for epidemic potential.

作者信息

Moody James, Benton Richard A

机构信息

Department of Sociology, Duke University, Durham, NC; King Abdulaziz University, Jeddah, Makkah, Saudi Arabia.

School of Labor & Employment Relations, University of Illinois at Urbana Champaign, Champaign, IL.

出版信息

Ann Epidemiol. 2016 Apr;26(4):241-8. doi: 10.1016/j.annepidem.2016.02.011. Epub 2016 Mar 8.

Abstract

PURPOSE

Network diffusion depends on both the pattern and timing of relations, but the relative effects of timing and structure remain unclear. Here, we first show that concurrency (relations that overlap in time) increases epidemic potential by opening new routes in the network. Because this is substantively similar to adding contact paths, we next compare the effects of concurrency by observed levels of path redundancy (structural cohesion) to determine how the features interact.

METHODS

We establish that concurrency increases exposure analytically and then use simulation methods to manipulate concurrency over observed networks that vary naturally on structural cohesion. This design allows us to compare networks across a wide concurrency range holding constant features that might otherwise conflate concurrency and cohesion. We summarize the simulation results with general linear models.

RESULTS

Our results indicate interdependent effects of concurrency and structural cohesion: although both increase epidemic potential, concurrency matters most when the graph structure is sparse, because the exposure created by concurrency is redundant to observed paths within structurally cohesive networks.

CONCLUSIONS

Concurrency works by opening new paths in temporally ordered networks. Because this is substantively similar to having additional observed paths, concurrency in sparse networks has the same effect as adding relations and will have the greatest effect on epidemic potential in sparse networks.

摘要

目的

网络传播既取决于关系的模式,也取决于关系的时间安排,但时间安排和结构的相对影响仍不明确。在此,我们首先表明,并发(在时间上重叠的关系)通过在网络中开辟新路径来增加流行潜力。由于这在本质上类似于增加接触路径,我们接下来通过观察到的路径冗余(结构凝聚性)水平来比较并发的影响,以确定这些特征是如何相互作用的。

方法

我们通过分析确定并发会增加接触机会,然后使用模拟方法在结构凝聚性自然变化的观察网络上操纵并发。这种设计使我们能够在保持可能会混淆并发和凝聚性的恒定特征的情况下,比较不同并发范围的网络。我们用一般线性模型总结模拟结果。

结果

我们的结果表明并发和结构凝聚性存在相互依存的影响:虽然两者都会增加流行潜力,但当图结构稀疏时,并发最为重要,因为并发产生的接触机会在结构凝聚的网络中与观察到的路径是冗余的。

结论

并发通过在时间有序的网络中开辟新路径起作用。由于这在本质上类似于拥有额外的观察路径,稀疏网络中的并发与添加关系具有相同的效果,并且对稀疏网络中的流行潜力影响最大。

相似文献

1
Interdependent effects of cohesion and concurrency for epidemic potential.凝聚性和并发率对流行潜力的相互依存效应。
Ann Epidemiol. 2016 Apr;26(4):241-8. doi: 10.1016/j.annepidem.2016.02.011. Epub 2016 Mar 8.
2
Concurrency measures in the era of temporal network epidemiology: a review.时变网络流行病学中的并发性度量:综述
J R Soc Interface. 2021 Jun;18(179):20210019. doi: 10.1098/rsif.2021.0019. Epub 2021 Jun 2.

引用本文的文献

2
Concurrency measures in the era of temporal network epidemiology: a review.时变网络流行病学中的并发性度量:综述
J R Soc Interface. 2021 Jun;18(179):20210019. doi: 10.1098/rsif.2021.0019. Epub 2021 Jun 2.
3
6
Epidemic potential by sexual activity distributions.基于性活动分布的流行潜力。
Netw Sci (Camb Univ Press). 2017 Dec;5(4):461-475. doi: 10.1017/nws.2017.3. Epub 2017 Apr 24.

本文引用的文献

3
Measuring and modelling concurrency.并发的度量和建模。
J Int AIDS Soc. 2013 Feb 12;16(1):17431. doi: 10.7448/IAS.16.1.17431.
9
Spread of epidemic disease on networks.传染病在网络上的传播。
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Jul;66(1 Pt 2):016128. doi: 10.1103/PhysRevE.66.016128. Epub 2002 Jul 26.
10
Concurrent partnerships and the spread of HIV.并发伴侣关系与艾滋病毒的传播。
AIDS. 1997 Apr;11(5):641-8. doi: 10.1097/00002030-199705000-00012.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验