Giest Tracy N, Chang Young-Hui
School of Applied Physiology, Georgia Institute of Technology, Atlanta, GA, USA.
School of Applied Physiology, Georgia Institute of Technology, Atlanta, GA, USA.
J Biomech. 2016 Jun 14;49(9):1757-1764. doi: 10.1016/j.jbiomech.2016.04.004. Epub 2016 Apr 8.
Propulsive force production (indicative of intrinsic force-length-velocity characteristics of the plantar flexor muscles) has been shown to be a major determinant of the human walk-to-run transition. The purpose of this work was to determine the gait transition speed of persons with unilateral transtibial amputation donning a passive-elastic prosthesis and assess whether a mechanical limit of their intact side plantar flexor muscles is a major determinant of their walk-to-run transition. We determined each individual׳s gait transition speed (GTS) via an incremental protocol and assessed kinetics and kinematics during walking at speeds 50%, 60%, 70%, 80%, 90%, 100%, 120%, and 130% of that gait transition speed (100%:GTS). Unilateral transtibial amputees transitioned between gaits at significantly slower absolute speeds than matched able-bodied controls (1.73±0.13 and 2.09±0.05m/s respectively, p<0.01). Peak anterior-posterior propulsive force increased with speed in controls until 100% of the preferred gait transition speed and decreased at greater speeds. A significant decrease in anterior-posterior propulsive force production was found at 120%GTS (110%: 0.27±0.04>120%: 0.23±0.05BW, p<0.05). In contrast, amputee subjects' intact side generated significantly higher peak anterior-posterior propulsive forces while walking at speeds above their preferred gait transition speed (100%: 0.28±0.04<110%: 0.30±0.04BW, p<0.05). Changes in propulsive force production were found to be a function of changes in absolute speed, rather than relative to the walk-to-run transition speed. Therefore, the walk-to-run transition in unilateral transtibial amputees is not likely dictated by propulsive force production or the force-length-velocity characteristics of the intact side plantar flexor muscles.
推进力的产生(反映了跖屈肌内在的力-长度-速度特性)已被证明是人类步行到跑步转换的一个主要决定因素。这项研究的目的是确定佩戴被动弹性假肢的单侧胫骨截肢者的步态转换速度,并评估其健全侧跖屈肌的机械极限是否是其步行到跑步转换的主要决定因素。我们通过递增方案确定了每个个体的步态转换速度(GTS),并评估了在相当于该步态转换速度的50%、60%、70%、80%、90%、100%、120%和130%的速度下行走时的动力学和运动学情况(100%:GTS)。与匹配的健全对照组相比,单侧胫骨截肢者在步态之间转换时的绝对速度明显较慢(分别为1.73±0.13和2.09±0.05米/秒,p<0.01)。健全对照组中,前后向推进力峰值随速度增加,直至达到首选步态转换速度的100%,而在更高速度下则下降。在120%GTS时,前后向推进力产生显著下降(110%:0.27±0.04>120%:0.23±0.05体重,p<0.05)。相比之下,截肢者在高于其首选步态转换速度的速度行走时,其健全侧产生的前后向推进力峰值明显更高(100%:0.28±0.04<110%:0.30±0.04体重,p<0.05)。研究发现,推进力产生的变化是绝对速度变化的函数,而不是相对于步行到跑步转换速度的函数。因此,单侧胫骨截肢者的步行到跑步转换不太可能由推进力产生或健全侧跖屈肌的力-长度-速度特性所决定。