Suppr超能文献

通过全局抑制间接相关性进行网络链路预测。

Network link prediction by global silencing of indirect correlations.

机构信息

Center for Complex Network Research and Department of Physics, Northeastern University, Boston, Massachusetts, USA.

出版信息

Nat Biotechnol. 2013 Aug;31(8):720-5. doi: 10.1038/nbt.2601. Epub 2013 Jul 14.

Abstract

Predictions of physical and functional links between cellular components are often based on correlations between experimental measurements, such as gene expression. However, correlations are affected by both direct and indirect paths, confounding our ability to identify true pairwise interactions. Here we exploit the fundamental properties of dynamical correlations in networks to develop a method to silence indirect effects. The method receives as input the observed correlations between node pairs and uses a matrix transformation to turn the correlation matrix into a highly discriminative silenced matrix, which enhances only the terms associated with direct causal links. Against empirical data for Escherichia coli regulatory interactions, the method enhanced the discriminative power of the correlations by twofold, yielding >50% predictive improvement over traditional correlation measures and 6% over mutual information. Overall this silencing method will help translate the abundant correlation data into insights about a system's interactions, with applications ranging from link prediction to inferring the dynamical mechanisms governing biological networks.

摘要

对细胞成分之间的物理和功能联系的预测通常基于基因表达等实验测量之间的相关性。然而,相关性受到直接和间接路径的影响,这使得我们难以识别真正的成对相互作用。在这里,我们利用网络中动态相关性的基本特性来开发一种方法来消除间接效应。该方法接收节点对之间观察到的相关性作为输入,并使用矩阵变换将相关矩阵转换为高度可区分的静默矩阵,该矩阵仅增强与直接因果关系相关的项。针对大肠杆菌调控相互作用的经验数据,该方法将相关性的判别能力提高了两倍,与传统相关性度量相比,预测精度提高了 50%以上,与互信息相比,提高了 6%。总的来说,这种沉默方法将有助于将丰富的相关数据转化为对系统相互作用的深入了解,其应用范围从链路预测到推断控制生物网络的动态机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe91/3740009/de85f2ffb81d/nihms-477624-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验