Suppr超能文献

WCSGNet:一种使用加权细胞特异性网络进行单细胞RNA测序中细胞类型注释的图神经网络方法。

WCSGNet: a graph neural network approach using weighted cell-specific networks for cell-type annotation in scRNA-seq.

作者信息

Wang Yi-Ran, Du Pu-Feng

机构信息

College of Intelligence and Computing, Tianjin University, Tianjin, China.

出版信息

Front Genet. 2025 Feb 17;16:1553352. doi: 10.3389/fgene.2025.1553352. eCollection 2025.

Abstract

Single-cell RNA sequencing (scRNA-seq) has emerged as a powerful tool for understanding cellular heterogeneity, providing unprecedented resolution in molecular regulation analysis. Existing supervised learning approaches for cell type annotation primarily utilize gene expression profiles from scRNA-seq data. Although some methods incorporated gene interaction network information, they fail to use cell-specific gene association networks. This limitation overlooks the unique gene interaction patterns within individual cells, potentially compromising the accuracy of cell type classification. We introduce WCSGNet, a graph neural network-based algorithm for automatic cell-type annotation that leverages Weighted Cell-Specific Networks (WCSNs). These networks are constructed based on highly variable genes and inherently capture both gene expression patterns and gene association network structure features. Extensive experimental validation demonstrates that WCSGNet consistently achieves superior cell type classification performance, ranking among the top-performing methods while maintaining robust stability across diverse datasets. Notably, WCSGNet exhibits a distinct advantage in handling imbalanced datasets, outperforming existing methods in these challenging scenarios. All datasets and codes for reproducing this work were deposited in a GitHub repository (https://github.com/Yi-ellen/WCSGNet).

摘要

单细胞RNA测序(scRNA-seq)已成为理解细胞异质性的强大工具,在分子调控分析中提供了前所未有的分辨率。现有的用于细胞类型注释的监督学习方法主要利用scRNA-seq数据中的基因表达谱。尽管一些方法纳入了基因相互作用网络信息,但它们未能使用细胞特异性基因关联网络。这一局限性忽略了单个细胞内独特的基因相互作用模式,可能会影响细胞类型分类的准确性。我们引入了WCSGNet,一种基于图神经网络的自动细胞类型注释算法,该算法利用加权细胞特异性网络(WCSN)。这些网络基于高变基因构建,内在地捕获了基因表达模式和基因关联网络结构特征。广泛的实验验证表明,WCSGNet始终实现卓越的细胞类型分类性能,跻身表现最佳的方法之列,同时在不同数据集上保持稳健的稳定性。值得注意的是,WCSGNet在处理不平衡数据集方面具有明显优势,在这些具有挑战性的场景中优于现有方法。所有用于重现这项工作的数据集和代码都存放在GitHub存储库中(https://github.com/Yi-ellen/WCSGNet)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1560/11872911/f0f733bc3f8b/fgene-16-1553352-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验