Suppr超能文献

控制石墨烯上磷脂单层、双层和完整囊泡层的形成。

Controlling the Formation of Phospholipid Monolayer, Bilayer, and Intact Vesicle Layer on Graphene.

作者信息

Tabaei Seyed R, Ng Wei Beng, Cho Sang-Joon, Cho Nam-Joon

机构信息

Research and Development Center, Park Systems , Suwon 443-270, South Korea.

Advanced Institute of Convergence Technology, Seoul National University , Suwon 443-270, South Korea.

出版信息

ACS Appl Mater Interfaces. 2016 May 11;8(18):11875-80. doi: 10.1021/acsami.6b02837. Epub 2016 Apr 27.

Abstract

Exciting progress has been made in the use of graphene for bio- and chemical sensing applications. In this regard, interfacing lipid membranes with graphene provides a high-sealing interface that is resistant to nonspecific protein adsorption and suitable for measuring biomembrane-associated interactions. However, a controllable method to form well-defined lipid bilayer coatings remains elusive, and there are varying results in the literature. Herein, we demonstrate how design strategies based on molecular self-assembly and surface chemistry can be employed to coat graphene surface with different classes of lipid membrane architectures. We characterize the self-assembly of lipid membranes on CVD-graphene using quartz crystal microbalance with dissipation, field-effect transistor, and Raman spectroscopy. By employing the solvent-assisted lipid bilayer (SALB) method, a lipid monolayer and bilayer were formed on pristine and oxygen-plasma-treated CVD-graphene, respectively. On these surfaces, vesicle fusion method resulted in formation of a lipid monolayer and intact vesicle layer, respectively. Collectively, these findings provide the basis for improved surface functionalization strategies on graphene toward bioelectronic applications.

摘要

在将石墨烯用于生物和化学传感应用方面已经取得了令人兴奋的进展。在这方面,脂质膜与石墨烯的界面提供了一个高密封性的界面,该界面能够抵抗非特异性蛋白质吸附,并且适用于测量与生物膜相关的相互作用。然而,形成明确的脂质双层涂层的可控方法仍然难以捉摸,并且文献中的结果各不相同。在此,我们展示了如何采用基于分子自组装和表面化学的设计策略,用不同类型的脂质膜结构来包覆石墨烯表面。我们使用具有耗散功能的石英晶体微天平、场效应晶体管和拉曼光谱对化学气相沉积(CVD)石墨烯上脂质膜的自组装进行了表征。通过采用溶剂辅助脂质双层(SALB)方法,分别在原始的和经氧等离子体处理的CVD石墨烯上形成了脂质单层和双层。在这些表面上,囊泡融合方法分别导致形成了脂质单层和完整的囊泡层。总的来说,这些发现为改进石墨烯在生物电子应用方面的表面功能化策略提供了基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验