Suppr超能文献

脂质双层涂层在裸氧化铝上的自组装形成:克服界面水的作用力。

Self-assembly formation of lipid bilayer coatings on bare aluminum oxide: overcoming the force of interfacial water.

机构信息

School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798, Singapore.

出版信息

ACS Appl Mater Interfaces. 2015 Jan 14;7(1):959-68. doi: 10.1021/am507651h. Epub 2014 Dec 29.

Abstract

Widely used in catalysis and biosensing applications, aluminum oxide has become popular for surface functionalization with biological macromolecules, including lipid bilayer coatings. However, it is difficult to form supported lipid bilayers on aluminum oxide, and current methods require covalent surface modification, which masks the interfacial properties of aluminum oxide, and/or complex fabrication techniques with specific conditions. Herein, we addressed this issue by identifying simple and robust strategies to form fluidic lipid bilayers on aluminum oxide. The fabrication of a single lipid bilayer coating was achieved by two methods, vesicle fusion under acidic conditions and solvent-assisted lipid bilayer (SALB) formation under near-physiological pH conditions. Importantly, quartz crystal microbalance with dissipation (QCM-D) monitoring measurements determined that the hydration layer of a supported lipid bilayer on aluminum oxide is appreciably thicker than that of a bilayer on silicon oxide. Fluorescence recovery after photobleaching (FRAP) analysis indicated that the diffusion coefficient of lateral lipid mobility was up to 3-fold greater on silicon oxide than on aluminum oxide. In spite of this hydrodynamic coupling, the diffusion coefficient on aluminum oxide, but not silicon oxide, was sensitive to the ionic strength condition. Extended-DLVO model calculations estimated the thermodynamics of lipid-substrate interactions on aluminum oxide and silicon oxide, and predict that the range of the repulsive hydration force is greater on aluminum oxide, which in turn leads to an increased equilibrium separation distance. Hence, while a strong hydration force likely contributes to the difficulty of bilayer fabrication on aluminum oxide, it also confers advantages by stabilizing lipid bilayers with thicker hydration layers due to confined interfacial water. Such knowledge provides the basis for improved surface functionalization strategies on aluminum oxide, underscoring the practical importance of surface hydration.

摘要

氧化铝广泛应用于催化和生物传感应用中,已成为生物大分子表面功能化的热门选择,包括脂质双层涂层。然而,在氧化铝上形成支撑脂质双层是困难的,目前的方法需要共价表面修饰,这掩盖了氧化铝的界面性质,和/或具有特定条件的复杂制造技术。在此,我们通过确定在氧化铝上形成流体脂质双层的简单而强大的策略来解决这个问题。通过两种方法实现了单层脂质双层涂层的制备,即在酸性条件下通过囊泡融合和在近生理 pH 条件下通过溶剂辅助脂质双层(SALB)形成。重要的是,石英晶体微天平耗散监测(QCM-D)测量结果表明,氧化铝上支撑脂质双层的水合层明显比氧化硅上的水合层厚。荧光恢复后光漂白(FRAP)分析表明,侧向脂质流动性的扩散系数在氧化硅上比在氧化铝上高达 3 倍。尽管存在这种流体动力学耦合,但扩散系数在氧化铝上而不是氧化硅上对离子强度条件敏感。扩展-DLVO 模型计算估计了氧化铝和氧化硅上脂质-基底相互作用的热力学,并预测了氧化铝上的排斥水化力范围更大,这反过来又导致平衡分离距离增加。因此,虽然强水化力可能导致在氧化铝上制备双层困难,但由于界面水受限,它也通过稳定具有较厚水化层的脂质双层提供了优势。这种知识为在氧化铝上改进表面功能化策略提供了基础,突出了表面水合作用的实际重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验