Suppr超能文献

光合亚硝酸盐氧化菌的基因组学:对光合作用和硝化作用进化的见解

Genomics of a phototrophic nitrite oxidizer: insights into the evolution of photosynthesis and nitrification.

作者信息

Hemp James, Lücker Sebastian, Schott Joachim, Pace Laura A, Johnson Jena E, Schink Bernhard, Daims Holger, Fischer Woodward W

机构信息

Department of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA.

Department of Microbiology, Radboud University Nijmegen, Nijmegen, The Netherlands.

出版信息

ISME J. 2016 Nov;10(11):2669-2678. doi: 10.1038/ismej.2016.56. Epub 2016 Apr 19.

Abstract

Oxygenic photosynthesis evolved from anoxygenic ancestors before the rise of oxygen ~2.32 billion years ago; however, little is known about this transition. A high redox potential reaction center is a prerequisite for the evolution of the water-oxidizing complex of photosystem II. Therefore, it is likely that high-potential phototrophy originally evolved to oxidize alternative electron donors that utilized simpler redox chemistry, such as nitrite or Mn. To determine whether nitrite could have had a role in the transition to high-potential phototrophy, we sequenced and analyzed the genome of Thiocapsa KS1, a Gammaproteobacteria capable of anoxygenic phototrophic nitrite oxidation. The genome revealed a high metabolic flexibility, which likely allows Thiocapsa KS1 to colonize a great variety of habitats and to persist under fluctuating environmental conditions. We demonstrate that Thiocapsa KS1 does not utilize a high-potential reaction center for phototrophic nitrite oxidation, which suggests that this type of phototrophic nitrite oxidation did not drive the evolution of high-potential phototrophy. In addition, phylogenetic and biochemical analyses of the nitrite oxidoreductase (NXR) from Thiocapsa KS1 illuminate a complex evolutionary history of nitrite oxidation. Our results indicate that the NXR in Thiocapsa originates from a different nitrate reductase clade than the NXRs in chemolithotrophic nitrite oxidizers, suggesting that multiple evolutionary trajectories led to modern nitrite-oxidizing bacteria.

摘要

在约23.2亿年前氧气含量上升之前,有氧光合作用从无氧光合作用的祖先演化而来;然而,对于这一转变我们知之甚少。高氧化还原电位反应中心是光系统II水氧化复合物演化的先决条件。因此,高电位光养作用最初可能是为了氧化利用更简单氧化还原化学的替代电子供体而演化的,比如亚硝酸盐或锰。为了确定亚硝酸盐在向高电位光养作用转变过程中是否发挥了作用,我们对硫帽菌KS1的基因组进行了测序和分析,硫帽菌KS1是一种能够进行无氧光养性亚硝酸盐氧化的γ-变形菌。该基因组显示出高度的代谢灵活性,这可能使硫帽菌KS1能够在各种各样的生境中定殖,并在波动的环境条件下持续生存。我们证明硫帽菌KS1在光养性亚硝酸盐氧化过程中不使用高电位反应中心,这表明这种类型的光养性亚硝酸盐氧化并没有推动高电位光养作用的演化。此外,对硫帽菌KS1的亚硝酸盐氧化还原酶(NXR)进行的系统发育和生化分析揭示了亚硝酸盐氧化复杂的进化历史。我们的结果表明,硫帽菌中的NXR起源于与化能无机营养型亚硝酸盐氧化菌中的NXR不同的硝酸盐还原酶分支,这表明多种进化轨迹导致了现代亚硝酸盐氧化细菌的形成。

相似文献

1
Genomics of a phototrophic nitrite oxidizer: insights into the evolution of photosynthesis and nitrification.
ISME J. 2016 Nov;10(11):2669-2678. doi: 10.1038/ismej.2016.56. Epub 2016 Apr 19.
2
Anaerobic phototrophic nitrite oxidation by Thiocapsa sp. strain KS1 and Rhodopseudomonas sp. strain LQ17.
Microbiology (Reading). 2010 Aug;156(Pt 8):2428-2437. doi: 10.1099/mic.0.036004-0. Epub 2010 May 6.
3
A Nitrospira metagenome illuminates the physiology and evolution of globally important nitrite-oxidizing bacteria.
Proc Natl Acad Sci U S A. 2010 Jul 27;107(30):13479-84. doi: 10.1073/pnas.1003860107. Epub 2010 Jul 12.
4
Evolution of the 3-hydroxypropionate bicycle and recent transfer of anoxygenic photosynthesis into the Chloroflexi.
Proc Natl Acad Sci U S A. 2017 Oct 3;114(40):10749-10754. doi: 10.1073/pnas.1710798114. Epub 2017 Sep 18.
5
Nitrite, an electron donor for anoxygenic photosynthesis.
Science. 2007 Jun 29;316(5833):1870. doi: 10.1126/science.1139478.
7
Niche differentiation of ammonia oxidizers and nitrite oxidizers in rice paddy soil.
Environ Microbiol. 2013 Aug;15(8):2275-92. doi: 10.1111/1462-2920.12098. Epub 2013 Feb 25.
8
Nitrogen transformation under different dissolved oxygen levels by the anoxygenic phototrophic bacterium Marichromatium gracile.
World J Microbiol Biotechnol. 2017 Jun;33(6):113. doi: 10.1007/s11274-017-2280-z. Epub 2017 May 3.
10
The trouble with oxygen: The ecophysiology of extant phototrophs and implications for the evolution of oxygenic photosynthesis.
Free Radic Biol Med. 2019 Aug 20;140:233-249. doi: 10.1016/j.freeradbiomed.2019.05.003. Epub 2019 May 9.

引用本文的文献

1
Nitrate-Nitrite Interplay in the Nitrogen Biocycle.
Molecules. 2025 Jul 18;30(14):3023. doi: 10.3390/molecules30143023.
3
Nitrite Oxidation in Wastewater Treatment: Microbial Adaptation and Suppression Challenges.
Environ Sci Technol. 2023 Aug 29;57(34):12557-12570. doi: 10.1021/acs.est.3c00636. Epub 2023 Aug 17.
4
Molecular Relationships in Biofilm Formation and the Biosynthesis of Exoproducts in Pseudoalteromonas spp.
Mar Biotechnol (NY). 2022 Jun;24(3):431-447. doi: 10.1007/s10126-022-10097-0. Epub 2022 Apr 29.
5
From manganese oxidation to water oxidation: assembly and evolution of the water-splitting complex in photosystem II.
Photosynth Res. 2022 May;152(2):107-133. doi: 10.1007/s11120-022-00912-z. Epub 2022 Apr 9.
7
Structural and functional characterization of the intracellular filament-forming nitrite oxidoreductase multiprotein complex.
Nat Microbiol. 2021 Sep;6(9):1129-1139. doi: 10.1038/s41564-021-00934-8. Epub 2021 Jul 15.
9
Light-driven anaerobic microbial oxidation of manganese.
Nature. 2019 Dec;576(7786):311-314. doi: 10.1038/s41586-019-1804-0. Epub 2019 Dec 4.
10
Eelgrass Sediment Microbiome as a Nitrous Oxide Sink in Brackish Lake Akkeshi, Japan.
Microbes Environ. 2019 Mar 30;34(1):13-22. doi: 10.1264/jsme2.ME18103. Epub 2018 Dec 1.

本文引用的文献

1
Expanded metabolic versatility of ubiquitous nitrite-oxidizing bacteria from the genus Nitrospira.
Proc Natl Acad Sci U S A. 2015 Sep 8;112(36):11371-6. doi: 10.1073/pnas.1506533112. Epub 2015 Aug 24.
2
Growth of nitrite-oxidizing bacteria by aerobic hydrogen oxidation.
Science. 2014 Aug 29;345(6200):1052-4. doi: 10.1126/science.1256985.
3
Functional type 2 photosynthetic reaction centers found in the rare bacterial phylum Gemmatimonadetes.
Proc Natl Acad Sci U S A. 2014 May 27;111(21):7795-800. doi: 10.1073/pnas.1400295111. Epub 2014 May 12.
4
RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies.
Bioinformatics. 2014 May 1;30(9):1312-3. doi: 10.1093/bioinformatics/btu033. Epub 2014 Jan 21.
5
The Genome of Nitrospina gracilis Illuminates the Metabolism and Evolution of the Major Marine Nitrite Oxidizer.
Front Microbiol. 2013 Feb 21;4:27. doi: 10.3389/fmicb.2013.00027. eCollection 2013.
6
Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing.
Proc Natl Acad Sci U S A. 2013 Jan 15;110(3):1053-8. doi: 10.1073/pnas.1217107110. Epub 2012 Dec 31.
7
MicroScope--an integrated microbial resource for the curation and comparative analysis of genomic and metabolic data.
Nucleic Acids Res. 2013 Jan;41(Database issue):D636-47. doi: 10.1093/nar/gks1194. Epub 2012 Nov 27.
9
Mechanisms and evolution of oxidative sulfur metabolism in green sulfur bacteria.
Front Microbiol. 2011 May 24;2:116. doi: 10.3389/fmicb.2011.00116. eCollection 2011.
10
Model of the molecular basis for hydroxylamine oxidation and nitrous oxide production in methanotrophic bacteria.
FEMS Microbiol Lett. 2011 Sep;322(1):82-9. doi: 10.1111/j.1574-6968.2011.02340.x. Epub 2011 Jul 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验