Hemp James, Lücker Sebastian, Schott Joachim, Pace Laura A, Johnson Jena E, Schink Bernhard, Daims Holger, Fischer Woodward W
Department of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA.
Department of Microbiology, Radboud University Nijmegen, Nijmegen, The Netherlands.
ISME J. 2016 Nov;10(11):2669-2678. doi: 10.1038/ismej.2016.56. Epub 2016 Apr 19.
Oxygenic photosynthesis evolved from anoxygenic ancestors before the rise of oxygen ~2.32 billion years ago; however, little is known about this transition. A high redox potential reaction center is a prerequisite for the evolution of the water-oxidizing complex of photosystem II. Therefore, it is likely that high-potential phototrophy originally evolved to oxidize alternative electron donors that utilized simpler redox chemistry, such as nitrite or Mn. To determine whether nitrite could have had a role in the transition to high-potential phototrophy, we sequenced and analyzed the genome of Thiocapsa KS1, a Gammaproteobacteria capable of anoxygenic phototrophic nitrite oxidation. The genome revealed a high metabolic flexibility, which likely allows Thiocapsa KS1 to colonize a great variety of habitats and to persist under fluctuating environmental conditions. We demonstrate that Thiocapsa KS1 does not utilize a high-potential reaction center for phototrophic nitrite oxidation, which suggests that this type of phototrophic nitrite oxidation did not drive the evolution of high-potential phototrophy. In addition, phylogenetic and biochemical analyses of the nitrite oxidoreductase (NXR) from Thiocapsa KS1 illuminate a complex evolutionary history of nitrite oxidation. Our results indicate that the NXR in Thiocapsa originates from a different nitrate reductase clade than the NXRs in chemolithotrophic nitrite oxidizers, suggesting that multiple evolutionary trajectories led to modern nitrite-oxidizing bacteria.
在约23.2亿年前氧气含量上升之前,有氧光合作用从无氧光合作用的祖先演化而来;然而,对于这一转变我们知之甚少。高氧化还原电位反应中心是光系统II水氧化复合物演化的先决条件。因此,高电位光养作用最初可能是为了氧化利用更简单氧化还原化学的替代电子供体而演化的,比如亚硝酸盐或锰。为了确定亚硝酸盐在向高电位光养作用转变过程中是否发挥了作用,我们对硫帽菌KS1的基因组进行了测序和分析,硫帽菌KS1是一种能够进行无氧光养性亚硝酸盐氧化的γ-变形菌。该基因组显示出高度的代谢灵活性,这可能使硫帽菌KS1能够在各种各样的生境中定殖,并在波动的环境条件下持续生存。我们证明硫帽菌KS1在光养性亚硝酸盐氧化过程中不使用高电位反应中心,这表明这种类型的光养性亚硝酸盐氧化并没有推动高电位光养作用的演化。此外,对硫帽菌KS1的亚硝酸盐氧化还原酶(NXR)进行的系统发育和生化分析揭示了亚硝酸盐氧化复杂的进化历史。我们的结果表明,硫帽菌中的NXR起源于与化能无机营养型亚硝酸盐氧化菌中的NXR不同的硝酸盐还原酶分支,这表明多种进化轨迹导致了现代亚硝酸盐氧化细菌的形成。