Nakagawa Tatsunori, Tsuchiya Yuki, Ueda Shingo, Fukui Manabu, Takahashi Reiji
College of Bioresource Sciences, Nihon University.
Institute of Low Temperature Science, Hokkaido University.
Microbes Environ. 2019 Mar 30;34(1):13-22. doi: 10.1264/jsme2.ME18103. Epub 2018 Dec 1.
Nitrous oxide (NO) is a powerful greenhouse gas; however, limited information is currently available on the microbiomes involved in its sink and source in seagrass meadow sediments. Using laboratory incubations, a quantitative PCR (qPCR) analysis of NO reductase (nosZ) and ammonia monooxygenase subunit A (amoA) genes, and a metagenome analysis based on the nosZ gene, we investigated the abundance of NO-reducing microorganisms and ammonia-oxidizing prokaryotes as well as the community compositions of NO-reducing microorganisms in in situ and cultivated sediments in the non-eelgrass and eelgrass zones of Lake Akkeshi, Japan. Laboratory incubations showed that NO was reduced by eelgrass sediments and emitted by non-eelgrass sediments. qPCR analyses revealed that the abundance of nosZ gene clade II in both sediments before and after the incubation as higher in the eelgrass zone than in the non-eelgrass zone. In contrast, the abundance of ammonia-oxidizing archaeal amoA genes increased after incubations in the non-eelgrass zone only. Metagenome analyses of nosZ genes revealed that the lineages Dechloromonas-Magnetospirillum-Thiocapsa and Bacteroidetes (Flavobacteriia) within nosZ gene clade II were the main populations in the NO-reducing microbiome in the in situ sediments of eelgrass zones. Sulfur-oxidizing Gammaproteobacteria within nosZ gene clade II dominated in the lineage Dechloromonas-Magnetospirillum-Thiocapsa. Alphaproteobacteria within nosZ gene clade I were predominant in both zones. The proportions of Epsilonproteobacteria within nosZ gene clade II increased after incubations in the eelgrass zone microcosm supplemented with NO only. Collectively, these results suggest that the NO-reducing microbiome in eelgrass meadows is largely responsible for coastal NO mitigation.
一氧化二氮(N₂O)是一种强效温室气体;然而,目前关于海草草甸沉积物中其汇和源所涉及的微生物群落的信息有限。通过实验室培养、对一氧化二氮还原酶(nosZ)和氨单加氧酶亚基A(amoA)基因的定量聚合酶链反应(qPCR)分析以及基于nosZ基因的宏基因组分析,我们调查了日本厚岸湖非鳗草区和鳗草区原位及培养沉积物中一氧化二氮还原微生物和氨氧化原核生物的丰度以及一氧化二氮还原微生物的群落组成。实验室培养表明,鳗草沉积物可还原一氧化二氮,而非鳗草沉积物则会排放一氧化二氮。qPCR分析显示,培养前后,鳗草区两种沉积物中nosZ基因进化枝II的丰度均高于非鳗草区。相反,仅在非鳗草区培养后,氨氧化古菌amoA基因的丰度增加。对nosZ基因的宏基因组分析表明,nosZ基因进化枝II中的脱氯单胞菌属 - 嗜磁螺菌属 - 硫帽菌属谱系和拟杆菌门(黄杆菌纲)是鳗草区原位沉积物中一氧化二氮还原微生物群落的主要种群。nosZ基因进化枝II中的硫氧化γ-变形菌在脱氯单胞菌属 - 嗜磁螺菌属 - 硫帽菌属谱系中占主导地位。nosZ基因进化枝I中的α-变形菌在两个区域均占主导地位。仅在添加了一氧化二氮的鳗草区微宇宙培养后,nosZ基因进化枝II中的ε-变形菌比例增加。总体而言,这些结果表明,海草草甸中的一氧化二氮还原微生物群落对沿海一氧化二氮的减排起着很大作用。