文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于注意力机制的卷积神经网络场景文本检测方法

Text-Attentional Convolutional Neural Network for Scene Text Detection.

出版信息

IEEE Trans Image Process. 2016 Jun;25(6):2529-41. doi: 10.1109/TIP.2016.2547588.


DOI:10.1109/TIP.2016.2547588
PMID:27093723
Abstract

Recent deep learning models have demonstrated strong capabilities for classifying text and non-text components in natural images. They extract a high-level feature globally computed from a whole image component (patch), where the cluttered background information may dominate true text features in the deep representation. This leads to less discriminative power and poorer robustness. In this paper, we present a new system for scene text detection by proposing a novel text-attentional convolutional neural network (Text-CNN) that particularly focuses on extracting text-related regions and features from the image components. We develop a new learning mechanism to train the Text-CNN with multi-level and rich supervised information, including text region mask, character label, and binary text/non-text information. The rich supervision information enables the Text-CNN with a strong capability for discriminating ambiguous texts, and also increases its robustness against complicated background components. The training process is formulated as a multi-task learning problem, where low-level supervised information greatly facilitates the main task of text/non-text classification. In addition, a powerful low-level detector called contrast-enhancement maximally stable extremal regions (MSERs) is developed, which extends the widely used MSERs by enhancing intensity contrast between text patterns and background. This allows it to detect highly challenging text patterns, resulting in a higher recall. Our approach achieved promising results on the ICDAR 2013 data set, with an F-measure of 0.82, substantially improving the state-of-the-art results.

摘要

最近的深度学习模型在对自然图像中的文本和非文本成分进行分类方面表现出了强大的能力。它们从整个图像组件(补丁)全局计算提取高级特征,其中杂乱的背景信息可能会主导深层表示中的真实文本特征。这导致了较差的辨别能力和较差的鲁棒性。在本文中,我们通过提出一种新的文本注意卷积神经网络(Text-CNN)来提出一种新的系统来进行场景文本检测,该网络特别关注从图像组件中提取与文本相关的区域和特征。我们开发了一种新的学习机制,使用多级和丰富的监督信息来训练 Text-CNN,包括文本区域掩模、字符标签和二进制文本/非文本信息。丰富的监督信息使 Text-CNN 具有区分模糊文本的强大能力,并且还提高了其对复杂背景组件的鲁棒性。训练过程被公式化为多任务学习问题,其中低级监督信息极大地促进了文本/非文本分类的主要任务。此外,还开发了一种强大的低级检测器,称为对比度增强最大稳定极值区域(MSERs),它通过增强文本模式和背景之间的强度对比度来扩展广泛使用的 MSERs。这使得它能够检测极具挑战性的文本模式,从而提高了召回率。我们的方法在 ICDAR 2013 数据集上取得了有希望的结果,F 度量为 0.82,大大提高了现有技术的结果。

相似文献

[1]
Text-Attentional Convolutional Neural Network for Scene Text Detection.

IEEE Trans Image Process. 2016-6

[2]
Scene text detection via extremal region based double threshold convolutional network classification.

PLoS One. 2017-8-18

[3]
Robust Text Detection in Natural Scene Images.

IEEE Trans Pattern Anal Mach Intell. 2014-5

[4]
Co-trained convolutional neural networks for automated detection of prostate cancer in multi-parametric MRI.

Med Image Anal. 2017-8-24

[5]
A novel biomedical image indexing and retrieval system via deep preference learning.

Comput Methods Programs Biomed. 2018-2-6

[6]
Locally Supervised Deep Hybrid Model for Scene Recognition.

IEEE Trans Image Process. 2017-2

[7]
A hybrid approach to detect and localize texts in natural scene images.

IEEE Trans Image Process. 2010-9-2

[8]
TextField: Learning a Deep Direction Field for Irregular Scene Text Detection.

IEEE Trans Image Process. 2019-11

[9]
Discriminative Unsupervised Feature Learning with Exemplar Convolutional Neural Networks.

IEEE Trans Pattern Anal Mach Intell. 2015-10-29

[10]
Clinical text classification with rule-based features and knowledge-guided convolutional neural networks.

BMC Med Inform Decis Mak. 2019-4-4

引用本文的文献

[1]
Social media crisis communication and public engagement during COVID-19 analyzing public health and news media organizations' tweeting strategies.

Sci Rep. 2025-5-24

[2]
An efficient breast cancer classification model using bilateral filtering and fuzzy convolutional neural network.

Sci Rep. 2024-3-15

[3]
Chronic disease diagnosis model based on convolutional neural network and ensemble learning method.

Digit Health. 2023-8-31

[4]
A fine-tuned YOLOv5 deep learning approach for real-time house number detection.

PeerJ Comput Sci. 2023-7-3

[5]
Association Mining of Near Misses in Hydropower Engineering Construction Based on Convolutional Neural Network Text Classification.

Comput Intell Neurosci. 2022

[6]
LPI-HyADBS: a hybrid framework for lncRNA-protein interaction prediction integrating feature selection and classification.

BMC Bioinformatics. 2021-11-26

[7]
Urdu text in natural scene images: a new dataset and preliminary text detection.

PeerJ Comput Sci. 2021-9-16

[8]
MSF-Net: Multi-Scale Feature Learning Network for Classification of Surface Defects of Multifarious Sizes.

Sensors (Basel). 2021-7-29

[9]
Lung Infection Segmentation for COVID-19 Pneumonia Based on a Cascade Convolutional Network from CT Images.

Biomed Res Int. 2021

[10]
Cascaded Segmentation-Detection Networks for Word-Level Text Spotting.

Proc Int Conf Doc Anal Recognit. 2017-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索