Suppr超能文献

基于示例卷积神经网络的判别式无监督特征学习。

Discriminative Unsupervised Feature Learning with Exemplar Convolutional Neural Networks.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2016 Sep;38(9):1734-47. doi: 10.1109/TPAMI.2015.2496141. Epub 2015 Oct 29.

Abstract

Deep convolutional networks have proven to be very successful in learning task specific features that allow for unprecedented performance on various computer vision tasks. Training of such networks follows mostly the supervised learning paradigm, where sufficiently many input-output pairs are required for training. Acquisition of large training sets is one of the key challenges, when approaching a new task. In this paper, we aim for generic feature learning and present an approach for training a convolutional network using only unlabeled data. To this end, we train the network to discriminate between a set of surrogate classes. Each surrogate class is formed by applying a variety of transformations to a randomly sampled 'seed' image patch. In contrast to supervised network training, the resulting feature representation is not class specific. It rather provides robustness to the transformations that have been applied during training. This generic feature representation allows for classification results that outperform the state of the art for unsupervised learning on several popular datasets (STL-10, CIFAR-10, Caltech-101, Caltech-256). While features learned with our approach cannot compete with class specific features from supervised training on a classification task, we show that they are advantageous on geometric matching problems, where they also outperform the SIFT descriptor.

摘要

深度卷积网络已被证明在学习特定于任务的特征方面非常成功,这使得它们在各种计算机视觉任务上取得了前所未有的性能。这种网络的训练主要遵循监督学习范例,其中需要足够多的输入-输出对进行训练。在接近新任务时,获取大型训练集是关键挑战之一。在本文中,我们旨在进行通用特征学习,并提出了一种仅使用未标记数据训练卷积网络的方法。为此,我们训练网络来区分一组替代类。每个替代类都是通过对随机采样的“种子”图像补丁应用各种变换来形成的。与监督网络训练不同,所得的特征表示不是特定于类的。它为训练过程中应用的变换提供了鲁棒性。这种通用的特征表示允许在几个流行数据集(STL-10、CIFAR-10、Caltech-101、Caltech-256)上进行无监督学习的分类结果优于最新水平。虽然我们的方法学习的特征在分类任务上无法与监督训练的特定于类的特征相媲美,但我们表明它们在几何匹配问题上具有优势,在这些问题上它们也优于 SIFT 描述符。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验