文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于 CT 图像的级联卷积网络的 COVID-19 肺炎肺部感染分割。

Lung Infection Segmentation for COVID-19 Pneumonia Based on a Cascade Convolutional Network from CT Images.

机构信息

Department of Telecommunications Engineering, Faculty of Engineering, University of Guilan, Rasht, Iran.

Faculty of Industrial Engineering, Urmia University of Technology, Urmia, Iran.

出版信息

Biomed Res Int. 2021 Apr 15;2021:5544742. doi: 10.1155/2021/5544742. eCollection 2021.


DOI:10.1155/2021/5544742
PMID:33954175
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8054863/
Abstract

The COVID-19 pandemic is a global, national, and local public health concern which has caused a significant outbreak in all countries and regions for both males and females around the world. Automated detection of lung infections and their boundaries from medical images offers a great potential to augment the patient treatment healthcare strategies for tackling COVID-19 and its impacts. Detecting this disease from lung CT scan images is perhaps one of the fastest ways to diagnose patients. However, finding the presence of infected tissues and segment them from CT slices faces numerous challenges, including similar adjacent tissues, vague boundary, and erratic infections. To eliminate these obstacles, we propose a two-route convolutional neural network (CNN) by extracting global and local features for detecting and classifying COVID-19 infection from CT images. Each pixel from the image is classified into the normal and infected tissues. For improving the classification accuracy, we used two different strategies including fuzzy -means clustering and local directional pattern (LDN) encoding methods to represent the input image differently. This allows us to find more complex pattern from the image. To overcome the overfitting problems due to small samples, an augmentation approach is utilized. The results demonstrated that the proposed framework achieved precision 96%, recall 97%, score, average surface distance (ASD) of 2.8 ± 0.3 mm, and volume overlap error (VOE) of 5.6 ± 1.2%.

摘要

COVID-19 大流行是一个全球性、全国性和地方性的公共卫生问题,它在世界范围内导致了所有国家和地区的男性和女性的重大疫情爆发。从医学图像中自动检测肺部感染及其边界为解决 COVID-19 及其影响的患者治疗医疗策略提供了巨大的潜力。从肺部 CT 扫描图像中检测这种疾病可能是诊断患者最快的方法之一。然而,从 CT 切片中找到受感染的组织并将其分割开来面临着许多挑战,包括相似的相邻组织、模糊的边界和不规则的感染。为了消除这些障碍,我们提出了一种双通道卷积神经网络(CNN),通过提取全局和局部特征来从 CT 图像中检测和分类 COVID-19 感染。图像中的每个像素都被分类为正常组织和感染组织。为了提高分类精度,我们使用了两种不同的策略,包括模糊均值聚类和局部方向模式(LDN)编码方法,以不同的方式表示输入图像。这使我们能够从图像中找到更复杂的模式。为了克服由于样本量小而导致的过拟合问题,我们采用了扩充方法。结果表明,所提出的框架达到了 96%的精度、97%的召回率、95.4%的得分、平均表面距离(ASD)为 2.8±0.3mm 和体积重叠误差(VOE)为 5.6±1.2%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf8e/8054863/7b63add6dae3/BMRI2021-5544742.008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf8e/8054863/724cdb47c429/BMRI2021-5544742.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf8e/8054863/5c01b50dd2c3/BMRI2021-5544742.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf8e/8054863/15567aae29ba/BMRI2021-5544742.003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf8e/8054863/3a2eb2f56bc7/BMRI2021-5544742.004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf8e/8054863/23fccb926e04/BMRI2021-5544742.005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf8e/8054863/1b0144aa644c/BMRI2021-5544742.006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf8e/8054863/397b1e598d83/BMRI2021-5544742.007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf8e/8054863/7b63add6dae3/BMRI2021-5544742.008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf8e/8054863/724cdb47c429/BMRI2021-5544742.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf8e/8054863/5c01b50dd2c3/BMRI2021-5544742.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf8e/8054863/15567aae29ba/BMRI2021-5544742.003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf8e/8054863/3a2eb2f56bc7/BMRI2021-5544742.004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf8e/8054863/23fccb926e04/BMRI2021-5544742.005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf8e/8054863/1b0144aa644c/BMRI2021-5544742.006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf8e/8054863/397b1e598d83/BMRI2021-5544742.007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf8e/8054863/7b63add6dae3/BMRI2021-5544742.008.jpg

相似文献

[1]
Lung Infection Segmentation for COVID-19 Pneumonia Based on a Cascade Convolutional Network from CT Images.

Biomed Res Int. 2021

[2]
CoroNet: A deep neural network for detection and diagnosis of COVID-19 from chest x-ray images.

Comput Methods Programs Biomed. 2020-6-5

[3]
Inf-Net: Automatic COVID-19 Lung Infection Segmentation From CT Images.

IEEE Trans Med Imaging. 2020-8

[4]
Deep-COVID: Predicting COVID-19 from chest X-ray images using deep transfer learning.

Med Image Anal. 2020-7-21

[5]
Detection of coronavirus disease from X-ray images using deep learning and transfer learning algorithms.

J Xray Sci Technol. 2020

[6]
Automated Diagnosis of Chest X-Ray for Early Detection of COVID-19 Disease.

Comput Math Methods Med. 2021

[7]
DDA-SSNets: Dual decoder attention-based semantic segmentation networks for COVID-19 infection segmentation and classification using chest X-Ray images.

J Xray Sci Technol. 2024

[8]
Classification of COVID-19 patients from chest CT images using multi-objective differential evolution-based convolutional neural networks.

Eur J Clin Microbiol Infect Dis. 2020-4-27

[9]
Chest X-ray image phase features for improved diagnosis of COVID-19 using convolutional neural network.

Int J Comput Assist Radiol Surg. 2021-2

[10]
Novel Deep CNNs Explore Regions, Boundaries, and Residual Learning for COVID-19 Infection Analysis in Lung CT.

Tomography. 2024-8-3

引用本文的文献

[1]
Comparing Different Data Partitioning Strategies for Segmenting Areas Affected by COVID-19 in CT Scans.

Diagnostics (Basel). 2024-12-12

[2]
COVID-19 prediction using Caviar Squirrel Jellyfish Search Optimization technique in fog-cloud based architecture.

PLoS One. 2023

[3]
Artificial Intelligence and Infectious Disease Imaging.

J Infect Dis. 2023-10-3

[4]
An Intelligent Sorting Method of Film in Cotton Combining Hyperspectral Imaging and the AlexNet-PCA Algorithm.

Sensors (Basel). 2023-8-9

[5]
Remora Namib Beetle Optimization Enabled Deep Learning for Severity of COVID-19 Lung Infection Identification and Classification Using CT Images.

Sensors (Basel). 2023-6-3

[6]
Review on the Evaluation and Development of Artificial Intelligence for COVID-19 Containment.

Sensors (Basel). 2023-1-3

[7]
A novel deep neural network model based Xception and genetic algorithm for detection of COVID-19 from X-ray images.

Ann Oper Res. 2022-12-25

[8]
Application of Machine Learning and Deep Learning Techniques for COVID-19 Screening Using Radiological Imaging: A Comprehensive Review.

SN Comput Sci. 2023

[9]
Comprehensive Survey of Machine Learning Systems for COVID-19 Detection.

J Imaging. 2022-9-30

[10]
Active deep learning from a noisy teacher for semi-supervised 3D image segmentation: Application to COVID-19 pneumonia infection in CT.

Comput Med Imaging Graph. 2022-12

本文引用的文献

[1]
A Weakly-Supervised Framework for COVID-19 Classification and Lesion Localization From Chest CT.

IEEE Trans Med Imaging. 2020-8

[2]
Deep learning-based model for detecting 2019 novel coronavirus pneumonia on high-resolution computed tomography.

Sci Rep. 2020-11-5

[3]
Classification of Coronavirus (COVID-19) from X-ray and CT images using shrunken features.

Int J Imaging Syst Technol. 2021-3

[4]
Coronavirus disease (COVID-19) detection in Chest X-Ray images using majority voting based classifier ensemble.

Expert Syst Appl. 2021-3-1

[5]
Review on machine and deep learning models for the detection and prediction of Coronavirus.

Mater Today Proc. 2020

[6]
A Deep Learning System to Screen Novel Coronavirus Disease 2019 Pneumonia.

Engineering (Beijing). 2020-10

[7]
A Novel Medical Diagnosis model for COVID-19 infection detection based on Deep Features and Bayesian Optimization.

Appl Soft Comput. 2020-12

[8]
A combined deep CNN-LSTM network for the detection of novel coronavirus (COVID-19) using X-ray images.

Inform Med Unlocked. 2020

[9]
Diagnosis and detection of infected tissue of COVID-19 patients based on lung x-ray image using convolutional neural network approaches.

Chaos Solitons Fractals. 2020-11

[10]
Deep-COVID: Predicting COVID-19 from chest X-ray images using deep transfer learning.

Med Image Anal. 2020-7-21

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索