Ritterson Ryan S, Hoersch Daniel, Barlow Kyle A, Kortemme Tanja
California Institute for Quantitative Biomedical Research and Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, 1700 4th Street, Byers Hall 308 E, San Francisco, CA, 94158, USA.
Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany.
Methods Mol Biol. 2016;1414:197-211. doi: 10.1007/978-1-4939-3569-7_12.
In recent years, interest in controlling protein function with light has increased. Light offers a number of unique advantages over other methods, including spatial and temporal control and high selectivity. Here, we describe a general protocol for engineering a protein to be controllable with light via reaction with an exogenously introduced photoisomerizable small molecule and illustrate our protocol with two examples from the literature: the engineering of the calcium affinity of the cell-cell adhesion protein cadherin, which is an example of a protein that switches from a native to a disrupted state (Ritterson et al. J Am Chem Soc (2013) 135:12516-12519), and the engineering of the opening and closing of the chaperonin Mm-cpn, an example of a switch between two functional states (Hoersch et al.: Nat Nanotechn (2013) 8:928-932). This protocol guides the user from considering which proteins may be most amenable to this type of engineering, to considerations of how and where to make the desired changes, to the assays required to test for functionality.
近年来,利用光来控制蛋白质功能的研究兴趣日益浓厚。与其他方法相比,光具有许多独特的优势,包括空间和时间控制以及高选择性。在此,我们描述了一种通用方案,通过与外源引入的光异构化小分子反应,对蛋白质进行工程改造使其可受光控制,并以文献中的两个例子来说明我们的方案:细胞间粘附蛋白钙粘蛋白钙亲和力的工程改造,这是一个从天然状态转变为破坏状态的蛋白质实例(Ritterson等人,《美国化学会志》(2013年)135:12516 - 12519);以及伴侣蛋白Mm - cpn开合的工程改造,这是两种功能状态之间切换的一个实例(Hoersch等人:《自然纳米技术》(2013年)8:928 - 932)。该方案指导用户从考虑哪些蛋白质可能最适合这种类型的工程改造,到考虑如何以及在何处进行所需的改变,再到测试功能所需的检测方法。