Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany.
Institute of Experimental Pediatric Endocrinology, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany.
Pharmacol Res. 2016 Jun;108:9-15. doi: 10.1016/j.phrs.2016.03.027. Epub 2016 Apr 16.
In classical pharmacology agonists bind to their respective receptors by specific interaction and induce structural changes followed by cellular responses. However, some G protein-coupled receptor (GPCRs), such as rhodopsin and protease-activated receptors (PARs), have their agonists already covalently bound and are parts of the receptor proteins, respectively. Recent studies add adhesion GPCRs and glycoprotein hormone receptors (GPHRs) to the group of GPCRs activated by integral agonists. In contrast to rhodopsin and PARs, adhesion GPCRs and GPHRs exhibit large ectodomains (ECDs) which bind a number of different proteins and other extracellular molecules. It seems that these large size ECDs are required to integrate a multitude of extracellular signals, such as protein ligand binding, cell-cell contacts and even mechanical forces, into uniform intracellular signals. Upon extracellular ligand binding, the intramolecular agonist of those receptors is exposed or isomerizes and induces structural changes in the 7-transmembrane helix domain triggering G-protein activation. The existence of activating structures integrated in receptor molecules challenges our current pharmacological definition of an agonist. We summarized and discussed the specifics of tethered agonist pharmacology which add a number of new features of the already broad signaling abilities of GPCRs and may find useful applications in designer GPCRs.
在经典药理学中,激动剂通过特异性相互作用与各自的受体结合,并诱导结构变化,继而引发细胞反应。然而,一些 G 蛋白偶联受体(GPCR),如视紫红质和蛋白酶激活受体(PARs),其激动剂已经通过共价键结合,分别成为受体蛋白的一部分。最近的研究将黏附 GPCR 和糖蛋白激素受体(GPHR)添加到由整联激动剂激活的 GPCR 组中。与视紫红质和 PARs 不同,黏附 GPCR 和 GPHR 具有较大的细胞外结构域(ECD),可结合许多不同的蛋白质和其他细胞外分子。似乎这些较大的 ECD 是将多种细胞外信号(如蛋白配体结合、细胞-细胞接触甚至机械力)整合为统一的细胞内信号所必需的。当细胞外配体结合时,这些受体的分子内激动剂暴露或异构化,并在 7 次跨膜螺旋结构域中引发结构变化,从而触发 G 蛋白激活。整合在受体分子中的激活结构的存在挑战了我们当前对激动剂的药理学定义。我们总结并讨论了连接激动剂药理学的具体细节,这些细节增加了 GPCR 已经广泛的信号转导能力的一些新特征,并可能在设计 GPCR 中找到有用的应用。