Department of Materials Science & Engineering, Stanford University, Stanford, California 94305, USA.
Nat Mater. 2011 Jun 19;10(7):539-44. doi: 10.1038/nmat3047.
A leading approach for large-scale electrochemical energy production with minimal global-warming gas emission is to use a renewable source of electricity, such as solar energy, to oxidize water, providing the abundant source of electrons needed in fuel synthesis. We report corrosion-resistant, nanocomposite anodes for the oxidation of water required to produce renewable fuels. Silicon, an earth-abundant element and an efficient photovoltaic material, is protected by atomic layer deposition (ALD) of a highly uniform, 2 nm thick layer of titanium dioxide (TiO(2)) and then coated with an optically transmitting layer of a known catalyst (3 nm iridium). Photoelectrochemical water oxidation was observed to occur below the reversible potential whereas dark electrochemical water oxidation was found to have low-to-moderate overpotentials at all pH values, resulting in an inferred photovoltage of ~550 mV. Water oxidation is sustained at these anodes for many hours in harsh pH and oxidative environments whereas comparable silicon anodes without the TiO(2) coating quickly fail. The desirable electrochemical efficiency and corrosion resistance of these anodes is made possible by the low electron-tunnelling resistance (<0.006 Ω cm(2) for p(+)-Si) and uniform thickness of atomic-layer deposited TiO(2).
一种用于大规模电化学能源生产的主要方法是使用可再生能源(如太阳能)来氧化水,为燃料合成提供所需的丰富电子来源,从而最大限度地减少温室气体排放。我们报告了用于生产可再生燃料所需的氧化水的耐腐蚀、纳米复合阳极。硅是一种丰富的元素,也是一种高效的光伏材料,通过原子层沉积(ALD)保护其免受 2nm 厚的二氧化钛(TiO(2))的高度均匀层的影响,然后用已知催化剂(3nm 铱)的光学透明层进行涂覆。光电化学水氧化被观察到在可逆电位以下发生,而在所有 pH 值下,暗电化学水氧化都具有低至中等的过电位,导致推断的光电压约为 550mV。在恶劣的 pH 和氧化环境下,这些阳极可以持续进行数小时的水氧化,而没有 TiO(2)涂层的可比硅阳极则很快失效。这些阳极的电化学效率和耐腐蚀性是通过低电子隧道电阻(p(+)-Si 为 <0.006 Ω cm(2))和原子层沉积 TiO(2)的均匀厚度实现的。