Ros Carles, Carretero Nina M, David Jeremy, Arbiol Jordi, Andreu Teresa, Morante Joan R
Catalonia Institute for Energy Research (IREC) , Jardins de les Dones de Negre 1 , 08930 Sant Adrià del Besòs , Barcelona , Spain.
Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST , Campus UAB , Bellaterra, 08193 Barcelona , Spain.
ACS Appl Mater Interfaces. 2019 Aug 21;11(33):29725-29735. doi: 10.1021/acsami.9b05724. Epub 2019 Aug 7.
Around 100 nm thick TiO layers deposited by atomic layer deposition (ALD) have been investigated as anticorrosion protective films for silicon-based photoanodes decorated with 5 nm NiFe catalyst in highly alkaline electrolyte. Completely amorphous layers presented high resistivity; meanwhile, the ones synthesized at 300 °C, having a fully anatase crystalline TiO structure, introduced insignificant resistance, showing direct correlation between crystallization degree and electrical conductivity. The conductivity through crystalline TiO layers has been found not to be homogeneous, presenting preferential conduction paths attributed to grain boundaries and defects within the crystalline structure. A correlation between the conductivity atomic force microscopy measurements and grain interstitials can be seen, supported by high-resolution transmission electron microscopy cross-sectional images presenting defective regions in crystalline TiO grains. It was found that the conduction mechanism goes through the injection of electrons coming from water oxidation from the electrocatalyst into the TiO conduction band. Then, electrons are transported to the Si/SiO/TiO interface where electrons recombine with holes given by the pn-Si junction. No evidences of intra-band-gap states in TiO responsible of conductivity have been detected. Stability measurements of fully crystalline samples over 480 h in anodic polarization show a continuous current decay. Electrochemical impedance spectroscopy allows to identify that the main cause of deactivation is associated with the loss of TiO electrical conductivity, corresponding to a self-passivation mechanism. This is proposed to reflect the effect of OH ions diffusing in the TiO structure in anodic conditions by the electric field. This fact proves that a modification takes place in the defective zone of the layer, blocking the ability to transfer electrical charge through the layer. According to this mechanism, a regeneration of the degradation process is demonstrated possible based on ultraviolet illumination, which contributes to change the occupancy of TiO electronic states and to recover the defective zone's conductivity. These findings confirm the connection between the structural properties of the ALD-deposited polycrystalline layer and the degradation mechanisms and thus highlight main concerns toward fabricating long-lasting metal-oxide protective layers for frontal illuminated photoelectrodes.
通过原子层沉积(ALD)制备的厚度约为100纳米的TiO层,已被研究用作高度碱性电解质中装饰有5纳米NiFe催化剂的硅基光阳极的防腐保护膜。完全非晶态的层呈现出高电阻率;同时,在300℃合成的具有完全锐钛矿晶体TiO结构的层引入的电阻微不足道,表明结晶度与电导率之间存在直接关联。已发现通过结晶TiO层的电导率不均匀,呈现出归因于晶体结构中的晶界和缺陷的优先传导路径。电导率原子力显微镜测量与晶粒间隙之间存在相关性,这得到了高分辨率透射电子显微镜横截面图像的支持,这些图像显示了结晶TiO晶粒中的缺陷区域。研究发现,传导机制是通过将来自电催化剂水氧化的电子注入到TiO导带中。然后,电子被传输到Si/SiO/TiO界面,在那里电子与pn-Si结给出的空穴复合。未检测到导致电导率的TiO带隙内状态的证据。在阳极极化下对完全结晶样品进行480小时以上的稳定性测量显示电流持续衰减。电化学阻抗谱能够确定失活的主要原因与TiO电导率的损失有关,这对应于一种自钝化机制。这被认为反映了在阳极条件下OH离子通过电场在TiO结构中扩散的影响。这一事实证明,层的缺陷区域发生了变化,阻碍了通过该层传输电荷的能力。根据这一机制,基于紫外线照射证明了降解过程的再生是可能的,这有助于改变TiO电子态的占有率并恢复缺陷区域的电导率。这些发现证实了ALD沉积的多晶层的结构性质与降解机制之间的联系,从而突出了制造用于正面照明光电极的持久金属氧化物保护层的主要问题。