Zhou Yang, Liu Yining, Lu Haidong, Wu Si, Zhang Mingsha
State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China.
Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
Elife. 2016 Apr 20;5:e10912. doi: 10.7554/eLife.10912.
Motor control, motor learning, self-recognition, and spatial perception all critically depend on the comparison of motor intention to the actually executed movement. Despite our knowledge that the brainstem-cerebellum plays an important role in motor error detection and motor learning, the involvement of neocortex remains largely unclear. Here, we report the neuronal computation and representation of saccadic error in macaque posterior parietal cortex (PPC). Neurons with persistent pre- and post-saccadic response (PPS) represent the intended end-position of saccade; neurons with late post-saccadic response (LPS) represent the actual end-position of saccade. Remarkably, after the arrival of the LPS signal, the PPS neurons' activity becomes highly correlated with the discrepancy between intended and actual end-position, and with the probability of making secondary (corrective) saccades. Thus, this neuronal computation might underlie the formation of saccadic error signals in PPC for speeding up saccadic learning and leading the occurrence of secondary saccade.
运动控制、运动学习、自我识别和空间感知都严重依赖于运动意图与实际执行运动的比较。尽管我们知道脑干 - 小脑在运动误差检测和运动学习中起重要作用,但新皮层的参与情况仍 largely不清楚。在这里,我们报告猕猴后顶叶皮层(PPC)中扫视误差的神经元计算和表征。具有持续扫视前和扫视后反应(PPS)的神经元代表扫视的预期终点位置;具有扫视后晚期反应(LPS)的神经元代表扫视的实际终点位置。值得注意的是,在LPS信号到达后,PPS神经元的活动与预期和实际终点位置之间的差异以及进行二次(校正)扫视的概率高度相关。因此,这种神经元计算可能是PPC中扫视误差信号形成的基础,以加速扫视学习并引发二次扫视的发生。