Suppr超能文献

肺腺癌:定量 CT 表现与病理结果的相关性。

Lung Adenocarcinoma: Correlation of Quantitative CT Findings with Pathologic Findings.

机构信息

From the Departments of Radiology (J.P.K., O.I., J.G.E., J.L., D.P.N., E.B.T., C.W.K., A.M., H.R.), Pathology (J.S.), and Cardiothoracic Surgery (H.P., B.C.), New York University School of Medicine, NYU Langone Medical Center, 660 First Ave, 7th Floor, New York, NY 10016; and Department of Radiology, New York-Presbyterian Hospital-Weill Cornell Medical Center, New York, NY (J.G.E.).

出版信息

Radiology. 2016 Sep;280(3):931-9. doi: 10.1148/radiol.2016142975. Epub 2016 Apr 20.

Abstract

Purpose To identify the ability of computer-derived three-dimensional (3D) computed tomographic (CT) segmentation techniques to help differentiate lung adenocarcinoma subtypes. Materials and Methods This study had institutional research board approval and was HIPAA compliant. Pathologically classified resected lung adenocarcinomas (n = 41) with thin-section CT data were identified. Two readers independently placed over-inclusive volumes around nodules from which automated computer measurements were generated: mass (total mass) and volume (total volume) of the nodule and of any solid portion, in addition to the solid percentage of the nodule volume (percentage solid volume) or mass (percentage solid mass). Interobserver agreement and differences in measurements among pathologic entities were evaluated by using t tests. A multinomial logistic regression model was used to differentiate the probability of three diagnoses: invasive non-lepidic-predominant adenocarcinoma (INV), lepidic-predominant adenocarcinoma (LPA), and adenocarcinoma in situ (AIS)/minimally invasive adenocarcinoma (MIA). Results Mean percentage solid volume of INV was 35.4% (95% confidence interval [CI]: 26.2%, 44.5%)-higher than the 14.5% (95% CI: 10.3%, 18.7%) for LPA (P = .002). Mean percentage solid volume of AIS/MIA was 8.2% (95% CI: 2.7%, 13.7%) and had a trend toward being lower than that for LPA (P = .051). Accuracy of the model based on total volume and percentage solid volume was 73.2%; accuracy of the model based on total mass and percentage solid mass was 75.6%. Conclusion Computer-assisted 3D measurement of nodules at CT had good reproducibility and helped differentiate among subtypes of lung adenocarcinoma. (©) RSNA, 2016.

摘要

目的 旨在确定计算机三维(3D)计算机断层扫描(CT)分割技术的能力,以帮助区分肺腺癌亚型。

材料与方法 本研究获得了机构研究委员会的批准,并符合 HIPAA 规定。确定了具有薄层 CT 数据的经病理分类的肺腺癌切除术(n = 41)。两位读者独立地在结节周围放置了过度包含的体积,从这些体积中生成了自动计算机测量值:结节的质量(总质量)和体积(总体积),以及任何实性部分的质量和体积,此外还有结节体积的实性百分比(实性体积百分比)或质量(实性质量百分比)。使用 t 检验评估观察者间一致性和不同病理实体之间的测量差异。使用多项逻辑回归模型来区分三种诊断的概率:浸润性非贴壁为主型腺癌(INV)、贴壁为主型腺癌(LPA)和原位腺癌(AIS)/微浸润性腺癌(MIA)。

结果 INV 的平均实性体积百分比为 35.4%(95%置信区间:26.2%,44.5%)-高于 LPA 的 14.5%(95%置信区间:10.3%,18.7%)(P =.002)。AIS/MIA 的平均实性体积百分比为 8.2%(95%置信区间:2.7%,13.7%),且低于 LPA 的趋势(P =.051)。基于总体积和实性体积百分比的模型的准确率为 73.2%;基于总质量和实性质量百分比的模型的准确率为 75.6%。

结论 CT 上基于计算机的结节 3D 测量具有良好的可重复性,有助于区分肺腺癌亚型。(©)RSNA,2016。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验