Suppr超能文献

离子通道 - 转运体相互作用

Ion channel-transporter interactions.

作者信息

Neverisky Daniel L, Abbott Geoffrey W

机构信息

a Bioelectricity Laboratory, Departments of Pharmacology and Physiology and Biophysics, School of Medicine, University of California , Irvine , CA , USA.

出版信息

Crit Rev Biochem Mol Biol. 2015 Jul-Aug;51(4):257-67. doi: 10.3109/10409238.2016.1172553. Epub 2016 Apr 20.

Abstract

All living cells require membrane proteins that act as conduits for the regulated transport of ions, solutes and other small molecules across the cell membrane. Ion channels provide a pore that permits often rapid, highly selective and tightly regulated movement of ions down their electrochemical gradient. In contrast, active transporters can move moieties up their electrochemical gradient. The secondary active transporters (such as SLC superfamily solute transporters) achieve this by coupling uphill movement of the substrate to downhill movement of another ion, such as sodium. The primary active transporters (including H(+)/K(+)-ATPases and Na(+)/K(+)-ATPases) utilize ATP hydrolysis as an energy source to power uphill transport. It is well known that proteins in each of these classes work in concert with members of the other classes to ensure, for example, ion homeostasis, ion secretion and restoration of ion balance following action potentials. More recently, evidence is emerging of direct physical interaction between true ion channels, and some primary or secondary active transporters. Here, we review the first known members of this new class of macromolecular complexes that we term "chansporters", explore their biological roles and discuss the pathophysiological consequences of their disruption. We compare functional and/or physical interactions between the ubiquitous KCNQ1 potassium channel and various active transporters, and examine other newly discovered chansporter complexes that suggest we may be seeing the tip of the iceberg in a newly emerging signaling modality.

摘要

所有活细胞都需要膜蛋白,这些膜蛋白充当离子、溶质和其他小分子跨细胞膜进行调节运输的通道。离子通道提供一个孔道,允许离子常常快速、高度选择性且严格调控地顺着其电化学梯度移动。相比之下,主动转运蛋白可以使分子逆着其电化学梯度移动。次级主动转运蛋白(如SLC超家族溶质转运蛋白)通过将底物的上坡移动与另一种离子(如钠)的下坡移动相偶联来实现这一点。初级主动转运蛋白(包括H⁺/K⁺-ATP酶和Na⁺/K⁺-ATP酶)利用ATP水解作为能量来源来驱动上坡运输。众所周知,这些类别中的每一类蛋白质都与其他类别的成员协同工作,以确保例如离子稳态、离子分泌以及动作电位后离子平衡的恢复。最近,越来越多的证据表明真正的离子通道与一些初级或次级主动转运蛋白之间存在直接的物理相互作用。在此,我们综述了我们称为“通道转运体”的这类新的大分子复合物的首批已知成员,探讨它们的生物学作用,并讨论其破坏所导致的病理生理后果。我们比较了普遍存在的KCNQ1钾通道与各种主动转运蛋白之间的功能和/或物理相互作用,并研究了其他新发现的通道转运体复合物,这些复合物表明我们可能只是看到了一种新出现的信号传导方式的冰山一角。

相似文献

1
Ion channel-transporter interactions.离子通道 - 转运体相互作用
Crit Rev Biochem Mol Biol. 2015 Jul-Aug;51(4):257-67. doi: 10.3109/10409238.2016.1172553. Epub 2016 Apr 20.
2
Teamwork: Ion channels and transporters join forces in the brain.团队合作:离子通道和转运体在大脑中协同作用。
Neuropharmacology. 2019 Dec 15;161:107601. doi: 10.1016/j.neuropharm.2019.04.007. Epub 2019 Apr 5.
3
Chansporter complexes in cell signaling.细胞信号传导中的转运体复合物
FEBS Lett. 2017 Sep;591(17):2556-2576. doi: 10.1002/1873-3468.12755. Epub 2017 Aug 2.
4
Molecular dynamics simulations of membrane channels and transporters.膜通道和转运体的分子动力学模拟
Curr Opin Struct Biol. 2009 Apr;19(2):128-37. doi: 10.1016/j.sbi.2009.02.011. Epub 2009 Apr 1.
7
Chapter Five - Ubiquitination of Ion Channels and Transporters.第五章——离子通道和转运体的泛素化
Prog Mol Biol Transl Sci. 2016;141:161-223. doi: 10.1016/bs.pmbts.2016.02.005. Epub 2016 Apr 2.
8
Kinetic Models of Secondary Active Transporters.次级主动转运体的动力学模型。
Int J Mol Sci. 2019 Oct 28;20(21):5365. doi: 10.3390/ijms20215365.
10
Blood-brain barrier Na transporters in ischemic stroke.缺血性卒中中的血脑屏障钠转运体
Adv Pharmacol. 2014;71:113-46. doi: 10.1016/bs.apha.2014.06.011. Epub 2014 Aug 23.

引用本文的文献

3
Role of ion channels in the mechanism of proteinuria (Review).离子通道在蛋白尿机制中的作用(综述)
Exp Ther Med. 2022 Nov 24;25(1):27. doi: 10.3892/etm.2022.11726. eCollection 2023 Jan.
4
CatSper Calcium Channels: 20 Years On.猫 Sper 钙通道:20 年的历程。
Physiology (Bethesda). 2023 May 1;38(3):0. doi: 10.1152/physiol.00028.2022. Epub 2022 Dec 13.
5
Kv Channel Ancillary Subunits: Where Do We Go from Here?Kv 通道辅助亚基:我们从何处出发?
Physiology (Bethesda). 2022 Sep 1;37(5):0. doi: 10.1152/physiol.00005.2022.

本文引用的文献

2
Molecular Physiology of Water Balance.水平衡的分子生理学
N Engl J Med. 2015 Jul 9;373(2):196. doi: 10.1056/NEJMc1505505.
3
Inositol transport proteins.肌醇转运蛋白
FEBS Lett. 2015 Apr 28;589(10):1049-58. doi: 10.1016/j.febslet.2015.03.012. Epub 2015 Mar 24.
7
MaxiK channel and cell signalling.MaxiK 通道与细胞信号转导。
Pflugers Arch. 2014 May;466(5):875-86. doi: 10.1007/s00424-013-1359-0.
8
The role of KCNQ1 in mouse and human gastrointestinal cancers.KCNQ1 在人和小鼠胃肠道癌中的作用。
Oncogene. 2014 Jul 17;33(29):3861-8. doi: 10.1038/onc.2013.350. Epub 2013 Aug 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验