Suppr超能文献

通过间断介电泳对机械敏感细胞进行剪切应力和化学刺激同时作用

Concurrent shear stress and chemical stimulation of mechano-sensitive cells by discontinuous dielectrophoresis.

作者信息

Soffe Rebecca, Baratchi Sara, Tang Shi-Yang, Mitchell Arnan, McIntyre Peter, Khoshmanesh Khashayar

机构信息

School of Engineering, RMIT University , Victoria 3001, Australia.

School of Medical and Biomedical Science, RMIT University , Victoria 3083, Australia.

出版信息

Biomicrofluidics. 2016 Apr 4;10(2):024117. doi: 10.1063/1.4945309. eCollection 2016 Mar.

Abstract

Microfluidic platforms enable a variety of physical or chemical stimulation of single or multiple cells to be examined and monitored in real-time. To date, intracellular calcium signalling research is, however, predominantly focused on observing the response of cells to a single mode of stimulation; consequently, the sensitising/desensitising of cell responses under concurrent stimuli is not well studied. In this paper, we provide an extended Discontinuous Dielectrophoresis procedure to investigate the sensitising of chemical stimulation, over an extensive range of shear stress, up to 63 dyn/cm(2), which encompasses shear stresses experienced in the arterial and venus systems (10 to 60 dyn/cm(2)). Furthermore, the TRPV4-selective agonist GSK1016790A, a form of chemical stimulation, did not influence the ability of the cells' to remain immobilised under high levels of shear stress; thus, enabling us to investigate shear stress stimulation on agonism. Our experiments revealed that shear stress sensitises GSK1016790A-evoked intracellular calcium signalling of cells in a shear-stimulus dependent manner, as observed through a reduction in the cellular response time and an increase in the pharmacological efficacy. Consequently, suggesting that the role of TRPV4 may be underestimated in endothelial cells-which experience high levels of shear stress. This study highlights the importance of conducting studies at high levels of shear stress. Additionally, our approach will be valuable for examining the effect of high levels of shear on different cell types under different conditions, as presented here for agonist activation.

摘要

微流控平台能够对单个或多个细胞进行多种物理或化学刺激,并实时进行检测和监测。然而,迄今为止,细胞内钙信号研究主要集中于观察细胞对单一刺激模式的反应;因此,对于同时受到刺激时细胞反应的致敏/脱敏情况研究较少。在本文中,我们提供了一种扩展的不连续介电电泳方法,以研究在高达63达因/平方厘米的广泛剪切应力范围内化学刺激的致敏作用,该范围涵盖了动脉和静脉系统中所经历的剪切应力(10至60达因/平方厘米)。此外,化学刺激形式的TRPV4选择性激动剂GSK1016790A并不影响细胞在高剪切应力下保持固定的能力;因此,使我们能够研究剪切应力刺激对激动作用的影响。我们的实验表明,剪切应力以剪切刺激依赖的方式使GSK1016790A诱发的细胞内钙信号致敏,这通过细胞反应时间的缩短和药理效力的增加得以观察到。因此,这表明TRPV4在内皮细胞中的作用可能被低估了,因为内皮细胞会经历高水平的剪切应力。本研究强调了在高水平剪切应力下进行研究的重要性。此外,我们的方法对于研究不同条件下高水平剪切对不同细胞类型的影响将具有重要价值,如此处所示的激动剂激活情况。

相似文献

本文引用的文献

5
Cell-based microfluidic platform for mimicking human olfactory system.基于细胞的微流控平台,用于模拟人体嗅觉系统。
Biosens Bioelectron. 2015 Dec 15;74:554-61. doi: 10.1016/j.bios.2015.06.072. Epub 2015 Jul 8.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验