Institute of Groundwater Ecology, Helmholtz Zentrum München , Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.
Center for Applied Geosciences, University of Tübingen , Hölderlinstraße 12, 72074 Tübingen, Germany.
Environ Sci Technol. 2016 Jun 7;50(11):5729-39. doi: 10.1021/acs.est.5b03828. Epub 2016 May 13.
Compound-specific isotope analysis (CSIA) receives increasing interest for its ability to detect natural degradation of pesticides and pharmaceuticals. Despite recent laboratory studies, CSIA investigations of such micropollutants in the environment are still rare. To explore the certainty of information obtainable by CSIA in a near-environmental setting, a pulse of the pesticide bentazone, the pesticide metabolite 2,6-dichlorobenzamide (BAM), and the pharmaceuticals diclofenac and ibuprofen was released into a mesoscale aquifer with quasi-two-dimensional flow. Concentration breakthrough curves (BTC) of BAM and ibuprofen demonstrated neither degradation nor sorption. Bentazone was transformed but did not sorb significantly, whereas diclofenac showed both degradation and sorption. Carbon and nitrogen CSIA could be accomplished in similar concentrations as for "traditional" priority pollutants (low μg/L range), however, at the cost of uncertainties (0.4-0.5‰ (carbon), 1‰ (nitrogen)). Nonetheless, invariant carbon and nitrogen isotope values confirmed that BAM was neither degraded nor sorbed, while significant enrichment of (13)C and in particular (15)N corroborated transformation of diclofenac and bentazone. Retardation of diclofenac was reflected in additional (15)N sorption isotope effects, whereas isotope fractionation of transverse dispersion could not be identified. These results provide a benchmark on the performance of CSIA to monitor the reactivity of micropollutants in aquifers and may guide future efforts to accomplish CSIA at even lower concentrations (ng/L range).
化合物特定同位素分析(CSIA)因其能够检测农药和药物的自然降解而受到越来越多的关注。尽管最近进行了实验室研究,但 CSIA 对环境中此类微量污染物的调查仍然很少。为了探索 CSIA 在近环境条件下获得信息的确定性,将农药苯达松、农药代谢物 2,6-二氯苯甲酰胺(BAM)以及药品双氯芬酸和布洛芬的脉冲释放到具有准二维流动的中尺度含水层中。BAM 和布洛芬的浓度突破曲线(BTC)既没有降解也没有吸附。苯达松被转化但没有显著吸附,而双氯芬酸则表现出降解和吸附。碳和氮 CSIA 可以在与“传统”优先污染物(低μg/L 范围)相似的浓度下完成,但代价是不确定性(碳为 0.4-0.5‰,氮为 1‰)。尽管如此,不变的碳和氮同位素值证实 BAM 既没有降解也没有吸附,而双氯芬酸和苯达松的显著(13)C 和特别是(15)N 富集证实了它们的转化。双氯芬酸的滞后反映在额外的(15)N 吸附同位素效应中,而横向弥散的同位素分馏则无法识别。这些结果为 CSIA 监测含水层中微量污染物反应性的性能提供了基准,并可能指导未来在更低浓度(ng/L 范围)下进行 CSIA 的努力。