Suppr超能文献

估算蹲伏步态期间膝关节的力学行为:对机器人膝关节矫形器实时运动控制的启示。

Estimating the Mechanical Behavior of the Knee Joint During Crouch Gait: Implications for Real-Time Motor Control of Robotic Knee Orthoses.

作者信息

Lerner Zachary F, Damiano Diane L, Bulea Thomas C

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2016 Jun;24(6):621-9. doi: 10.1109/TNSRE.2016.2550860. Epub 2016 Apr 14.

Abstract

Individuals with cerebral palsy frequently exhibit crouch gait, a pathological walking pattern characterized by excessive knee flexion. Knowledge of the knee joint moment during crouch gait is necessary for the design and control of assistive devices used for treatment. Our goal was to 1) develop statistical models to estimate knee joint moment extrema and dynamic stiffness during crouch gait, and 2) use the models to estimate the instantaneous joint moment during weight-acceptance. We retrospectively computed knee moments from 10 children with crouch gait and used stepwise linear regression to develop statistical models describing the knee moment features. The models explained at least 90% of the response value variability: peak moment in early (99%) and late (90%) stance, and dynamic stiffness of weight-acceptance flexion (94%) and extension (98%). We estimated knee extensor moment profiles from the predicted dynamic stiffness and instantaneous knee angle. This approach captured the timing and shape of the computed moment (root-mean-squared error: 2.64 Nm); including the predicted early-stance peak moment as a correction factor improved model performance (root-mean-squared error: 1.37 Nm). Our strategy provides a practical, accurate method to estimate the knee moment during crouch gait, and could be used for real-time, adaptive control of robotic orthoses.

摘要

患有脑瘫的个体经常表现出蹲伏步态,这是一种以过度屈膝为特征的病理性行走模式。了解蹲伏步态期间的膝关节力矩对于用于治疗的辅助装置的设计和控制至关重要。我们的目标是:1)开发统计模型以估计蹲伏步态期间的膝关节力矩极值和动态刚度,以及2)使用这些模型估计承重期间的瞬时关节力矩。我们回顾性地计算了10名患有蹲伏步态儿童的膝关节力矩,并使用逐步线性回归来开发描述膝关节力矩特征的统计模型。这些模型解释了至少90%的响应值变异性:早期(99%)和晚期(90%)站立时的峰值力矩,以及承重屈曲(94%)和伸展(98%)时的动态刚度。我们根据预测的动态刚度和瞬时膝关节角度估计了膝关节伸肌力矩曲线。这种方法捕捉到了计算力矩的时间和形状(均方根误差:2.64 Nm);将预测的早期站立峰值力矩作为校正因子纳入可提高模型性能(均方根误差:1.37 Nm)。我们的策略提供了一种实用、准确的方法来估计蹲伏步态期间的膝关节力矩,可用于机器人矫形器的实时、自适应控制。

相似文献

1
Estimating the Mechanical Behavior of the Knee Joint During Crouch Gait: Implications for Real-Time Motor Control of Robotic Knee Orthoses.
IEEE Trans Neural Syst Rehabil Eng. 2016 Jun;24(6):621-9. doi: 10.1109/TNSRE.2016.2550860. Epub 2016 Apr 14.
2
How crouch gait can dynamically induce stiff-knee gait.
Ann Biomed Eng. 2010 Apr;38(4):1593-606. doi: 10.1007/s10439-010-9952-2. Epub 2010 Feb 17.
3
A Robotic Exoskeleton for Treatment of Crouch Gait in Children With Cerebral Palsy: Design and Initial Application.
IEEE Trans Neural Syst Rehabil Eng. 2017 Jun;25(6):650-659. doi: 10.1109/TNSRE.2016.2595501. Epub 2016 Jul 27.
4
Compressive tibiofemoral force during crouch gait.
Gait Posture. 2012 Apr;35(4):556-60. doi: 10.1016/j.gaitpost.2011.11.023. Epub 2011 Dec 27.
5
Influence of patellar position on the knee extensor mechanism in normal and crouched walking.
J Biomech. 2017 Jan 25;51:1-7. doi: 10.1016/j.jbiomech.2016.11.052. Epub 2016 Nov 22.
6
Relationship between assistive torque and knee biomechanics during exoskeleton walking in individuals with crouch gait.
IEEE Int Conf Rehabil Robot. 2017 Jul;2017:491-497. doi: 10.1109/ICORR.2017.8009296.
8
Effects of simulated crouch gait on foot kinematics and kinetics in healthy children.
Gait Posture. 2013 Sep;38(4):619-24. doi: 10.1016/j.gaitpost.2013.02.009. Epub 2013 Mar 6.
9
The efficacy of the floor-reaction ankle-foot orthosis in children with cerebral palsy.
J Bone Joint Surg Am. 2009 Oct;91(10):2440-7. doi: 10.2106/JBJS.H.00965.
10
Effect of floor reaction ankle-foot orthosis on crouch gait in patients with cerebral palsy: What can be expected?
Prosthet Orthot Int. 2018 Jun;42(3):245-253. doi: 10.1177/0309364617716240. Epub 2017 Jul 11.

引用本文的文献

1
Soft tissue can absorb surprising amounts of energy during knee exoskeleton use.
J R Soc Interface. 2024 Dec;21(221):20240539. doi: 10.1098/rsif.2024.0539. Epub 2024 Dec 4.
2
Design Advancements toward a Wearable Pediatric Robotic Knee Exoskeleton for Overground Gait Rehabilitation.
Proc IEEE RAS EMBS Int Conf Biomed Robot Biomechatron. 2018 Aug;2018:37-42. doi: 10.1109/biorob.2018.8487195. Epub 2018 Oct 11.
3
A Pediatric Knee Exoskeleton With Real-Time Adaptive Control for Overground Walking in Ambulatory Individuals With Cerebral Palsy.
Front Robot AI. 2021 Jun 18;8:702137. doi: 10.3389/frobt.2021.702137. eCollection 2021.
5
A lower-extremity exoskeleton improves knee extension in children with crouch gait from cerebral palsy.
Sci Transl Med. 2017 Aug 23;9(404). doi: 10.1126/scitranslmed.aam9145.
6
Relationship between assistive torque and knee biomechanics during exoskeleton walking in individuals with crouch gait.
IEEE Int Conf Rehabil Robot. 2017 Jul;2017:491-497. doi: 10.1109/ICORR.2017.8009296.
7
A Robotic Exoskeleton for Treatment of Crouch Gait in Children With Cerebral Palsy: Design and Initial Application.
IEEE Trans Neural Syst Rehabil Eng. 2017 Jun;25(6):650-659. doi: 10.1109/TNSRE.2016.2595501. Epub 2016 Jul 27.

本文引用的文献

1
Biomechanical Effects of Stiffness in Parallel With the Knee Joint During Walking.
IEEE Trans Biomed Eng. 2015 Oct;62(10):2389-401. doi: 10.1109/TBME.2015.2428636. Epub 2015 Apr 30.
2
Comparative abilities of Microsoft Kinect and Vicon 3D motion capture for gait analysis.
J Med Eng Technol. 2014 Jul;38(5):274-80. doi: 10.3109/03091902.2014.909540. Epub 2014 May 30.
4
Estimation of quasi-stiffness of the human knee in the stance phase of walking.
PLoS One. 2013;8(3):e59993. doi: 10.1371/journal.pone.0059993. Epub 2013 Mar 22.
5
Muscle contributions to vertical and fore-aft accelerations are altered in subjects with crouch gait.
Gait Posture. 2013 May;38(1):86-91. doi: 10.1016/j.gaitpost.2012.10.019. Epub 2012 Nov 27.
6
A practical strategy for sEMG-based knee joint moment estimation during gait and its validation in individuals with cerebral palsy.
IEEE Trans Biomed Eng. 2012 May;59(5):1480-7. doi: 10.1109/TBME.2012.2187651. Epub 2012 Mar 9.
7
Compressive tibiofemoral force during crouch gait.
Gait Posture. 2012 Apr;35(4):556-60. doi: 10.1016/j.gaitpost.2011.11.023. Epub 2011 Dec 27.
8
Robotic orthosis lokomat: a rehabilitation and research tool.
Neuromodulation. 2003 Apr;6(2):108-15. doi: 10.1046/j.1525-1403.2003.03017.x. Epub 2003 Jun 16.
9
Moment-angle relationship at lower limb joints during human walking at different velocities.
J Electromyogr Kinesiol. 1996 Sep;6(3):177-90. doi: 10.1016/1050-6411(96)00030-2.
10
Muscle contributions to support and progression during single-limb stance in crouch gait.
J Biomech. 2010 Aug 10;43(11):2099-105. doi: 10.1016/j.jbiomech.2010.04.003. Epub 2010 May 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验