Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching, Germany. Max-Planck-Institute of Quantum Optics, Hans-Kopfermann-Straße 1, 85748 Garching, Germany.
Science. 2016 Apr 22;352(6284):429-33. doi: 10.1126/science.aae0003.
Short electron pulses are central to time-resolved atomic-scale diffraction and electron microscopy, streak cameras, and free-electron lasers. We demonstrate phase-space control and characterization of 5-picometer electron pulses using few-cycle terahertz radiation, extending concepts of microwave electron pulse compression and streaking to terahertz frequencies. Optical-field control of electron pulses provides synchronism to laser pulses and offers a temporal resolution that is ultimately limited by the rise-time of the optical fields applied. We used few-cycle waveforms carried at 0.3 terahertz to compress electron pulses by a factor of 12 with a timing stability of <4 femtoseconds (root mean square) and measure them by means of field-induced beam deflection (streaking). Scaling the concept toward multiterahertz control fields holds promise for approaching the electronic time scale in time-resolved electron diffraction and microscopy.
短电子脉冲是时间分辨原子尺度衍射和电子显微镜、条纹相机和自由电子激光的核心。我们使用少周期太赫兹辐射演示了 5 皮米电子脉冲的相空间控制和特性,将微波电子脉冲压缩和条纹的概念扩展到太赫兹频率。电子脉冲的光场控制为激光脉冲提供了同步,并提供了最终受施加光场上升时间限制的时间分辨率。我们使用在 0.3 太赫兹处传输的少周期波形将电子脉冲压缩了 12 倍,其定时稳定性小于 4 飞秒(均方根),并通过场致束偏转(条纹)进行测量。将该概念扩展到多太赫兹控制场有望接近时间分辨电子衍射和显微镜中的电子时间尺度。