Suppr超能文献

利用高频微尺度聚焦声场实现高度局域化声流和亚微米级粒子的尺寸选择性浓缩。

Highly Localized Acoustic Streaming and Size-Selective Submicrometer Particle Concentration Using High Frequency Microscale Focused Acoustic Fields.

机构信息

Pillar of Engineering Product Development, Singapore University of Technology and Design , Singapore 487372, Singapore.

出版信息

Anal Chem. 2016 May 17;88(10):5513-22. doi: 10.1021/acs.analchem.6b01069. Epub 2016 May 2.

Abstract

Concentration and separation of particles and biological specimens are fundamental functions of micro/nanofluidic systems. Acoustic streaming is an effective and biocompatible way to create rapid microscale fluid motion and induce particle capture, though the >100 MHz frequencies required to directly generate acoustic body forces on the microscale have traditionally been difficult to generate and localize in a way that is amenable to efficient generation of streaming. Moreover, acoustic, hydrodynamic, and electrical forces as typically applied have difficulty manipulating specimens in the submicrometer regime. In this work, we introduce highly focused traveling surface acoustic waves (SAW) at high frequencies between 193 and 636 MHz for efficient and highly localized production of acoustic streaming vortices on microfluidic length scales. Concentration occurs via a novel mechanism, whereby the combined acoustic radiation and streaming field results in size-selective aggregation in fluid streamlines in the vicinity of a high-amplitude acoustic beam, as opposed to previous acoustic radiation induced particle concentration where objects typically migrate toward minimum pressure locations. Though the acoustic streaming is induced by a traveling wave, we are able to manipulate particles an order of magnitude smaller than possible using the traveling wave force alone. We experimentally and theoretically examine the range of particle sizes that can be captured in fluid streamlines using this technique, with rapid particle concentration demonstrated down to 300 nm diameters. We also demonstrate that locations of trapping and concentration are size-dependent, which is attributed to the combined effects of the acoustic streaming and acoustic forces.

摘要

粒子和生物样本的浓缩和分离是微纳流控系统的基本功能。声流是一种有效的、生物兼容的方法,可以产生快速的微尺度流体运动,并诱导粒子捕获,尽管 >100 MHz 的频率传统上难以产生并在适合于高效产生流的方式中局部化。此外,通常应用的声、流和电力难以在亚微米范围内操纵样本。在这项工作中,我们在 193 到 636 MHz 之间的高频下引入高度聚焦的行波表面声波(SAW),以在微流体长度尺度上高效且高度局域地产生声流涡旋。浓缩是通过一种新颖的机制发生的,其中声辐射和流场的组合导致在高振幅声束附近的流体流线上发生尺寸选择性聚集,而不是先前的声辐射诱导的粒子浓缩,其中物体通常迁移到最小压力位置。尽管声流是由行波引起的,但我们能够操纵比单独使用行波力可能的尺寸小一个数量级的颗粒。我们使用这种技术实验和理论上研究了可以在流场中捕获的颗粒尺寸范围,证明了快速的颗粒浓缩可达 300nm 直径。我们还表明,捕获和浓缩的位置是尺寸依赖性的,这归因于声流和声力的综合影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验