Li Jiali, Bo Luyu, Li Teng, Zhao Penghui, Du Yingshan, Cai Bowen, Shen Liang, Sun Wujin, Zhou Wei, Tian Zhenhua
Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA.
Department of Biological System Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA.
Adv Mater Technol. 2024 Dec 2;9(23). doi: 10.1002/admt.202400572. Epub 2024 Jul 25.
Acoustofluidics has shown great potential in enabling on-chip technologies for driving liquid flows and manipulating particles and cells for engineering, chemical, and biomedical applications. To introduce on-demand liquid sample processing and micro/nano-object manipulation functions to wearable and embeddable electronics, wireless acoustofluidic chips are highly desired. This paper presents wireless acoustofluidic chips to generate acoustic waves carrying sufficient energy and achieve key acoustofluidic functions, including arranging particles and cells, generating fluid streaming, and enriching in-droplet particles. To enable these functions, our wireless acoustofluidic chips leverage mechanisms, including inductive coupling-based wireless power transfer (WPT), frequency multiplexing-based control of multiple acoustic waves, and the resultant acoustic radiation and drag forces. For validation, the wirelessly generated acoustic waves are measured using laser vibrometry when different materials (, bone, tissue, and hand) are inserted between the WPT transmitter and receiver. Moreover, our wireless acoustofluidic chips successfully arrange nanoparticles into different patterns, align cells into parallel pearl chains, generate streaming, and enrich in-droplet microparticles. We anticipate this research to facilitate the development of embeddable wireless on-chip flow generators, wearable sensors with liquid sample processing functions, and implantable devices with flow generation and acoustic stimulation abilities for engineering, veterinary, and biomedical applications.
声流体技术在实现用于驱动液体流动以及操控颗粒和细胞的片上技术方面展现出了巨大潜力,可应用于工程、化学和生物医学领域。为了将按需液体样本处理以及微/纳米物体操控功能引入可穿戴和可植入电子设备中,人们迫切需要无线声流体芯片。本文介绍了能够产生携带足够能量的声波并实现关键声流体功能的无线声流体芯片,这些功能包括排列颗粒和细胞、产生流体流动以及富集液滴内的颗粒。为实现这些功能,我们的无线声流体芯片利用了多种机制,包括基于电感耦合的无线功率传输(WPT)、基于频率复用的多声波控制以及由此产生的声辐射力和拖曳力。为进行验证,当在WPT发射器和接收器之间插入不同材料(如骨头、组织和手)时,使用激光测振法测量无线产生的声波。此外,我们的无线声流体芯片成功地将纳米颗粒排列成不同图案,使细胞排列成平行的珍珠链,产生流体流动,并富集液滴内的微粒。我们预计这项研究将促进可植入无线片上流发生器、具有液体样本处理功能的可穿戴传感器以及具有流体产生和声学刺激能力的可植入设备的开发,以用于工程、兽医和生物医学应用。