Vacas-Córdoba Enrique, Maly Marek, De la Mata Francisco J, Gómez Rafael, Pion Marjorie, Muñoz-Fernández M Ángeles
Molecular Immunobiology Laboratory, General Universitary Hospital Gregorio Marañon, Madrid, Spain; Health Research Institute Gregorio Marañon, Madrid, Spain; Spanish HIV HGM BioBanK, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain.
Faculty of Science, Jan Evangelista Purkyně University, Ústí nad Labem, Czech Republic; Laboratory of Applied Mathematics and Physics (LaMFI), University of Applied Sciences and Arts of Southern Switzerland, Manno, Switzerland.
Int J Nanomedicine. 2016 Apr 5;11:1281-94. doi: 10.2147/IJN.S96352. eCollection 2016.
Nanotechnology-derived platforms, such as dendrimers, are very attractive in several biological applications. In the case of human immunodeficiency virus (HIV) infection, polyanionic carbosilane dendrimers have shown great potential as antiviral agents in the development of novel microbicides to prevent the sexual transmission of HIV-1. In this work, we studied the mechanism of two sulfated and naphthylsulfonated functionalized carbosilane dendrimers, G3-S16 and G2-NF16. They are able to inhibit viral infection at fusion and thus at the entry step. Both compounds impede the binding of viral particles to target cell surface and membrane fusion through the blockage of gp120-CD4 interaction. In addition, and for the first time, we demonstrate that dendrimers can inhibit cell-to-cell HIV transmission and difficult infectious synapse formation. Thus, carbosilane dendrimers' mode of action is a multifactorial process targeting several proteins from viral envelope and from host cells that could block HIV infection at different stages during the first step of infection.
纳米技术衍生的平台,如树枝状大分子,在多种生物学应用中极具吸引力。在人类免疫缺陷病毒(HIV)感染方面,聚阴离子碳硅烷树枝状大分子在开发新型杀微生物剂以预防性传播HIV-1中显示出作为抗病毒剂的巨大潜力。在这项工作中,我们研究了两种硫酸化和萘磺化功能化碳硅烷树枝状大分子G3-S16和G2-NF16的作用机制。它们能够在融合阶段进而在进入步骤抑制病毒感染。这两种化合物通过阻断gp120-CD4相互作用来阻碍病毒颗粒与靶细胞表面的结合以及膜融合。此外,我们首次证明树枝状大分子可以抑制细胞间HIV传播和难以形成的感染性突触。因此,碳硅烷树枝状大分子的作用模式是一个多因素过程,针对病毒包膜和宿主细胞中的多种蛋白质,可在感染第一步的不同阶段阻断HIV感染。