Suppr超能文献

自回归积分滑动平均模型在中国江苏省痢疾发病率预测中的应用。

The Use of an Autoregressive Integrated Moving Average Model for Prediction of the Incidence of Dysentery in Jiangsu, China.

作者信息

Wang Kewei, Song Wentao, Li Jinping, Lu Wu, Yu Jiangang, Han Xiaofeng

机构信息

Jiangnan University, Wuxi, Jiangsu, China.

Nanchang Center for Disease Control and Prevention, Jiangxi, China.

出版信息

Asia Pac J Public Health. 2016 May;28(4):336-46. doi: 10.1177/1010539516645153. Epub 2016 Apr 22.

Abstract

The aim of this study is to forecast the incidence of bacillary dysentery with a prediction model. We collected the annual and monthly laboratory data of confirmed cases from January 2004 to December 2014. In this study, we applied an autoregressive integrated moving average (ARIMA) model to forecast bacillary dysentery incidence in Jiangsu, China. The ARIMA (1, 1, 1) × (1, 1, 2)12 model fitted exactly with the number of cases during January 2004 to December 2014. The fitted model was then used to predict bacillary dysentery incidence during the period January to August 2015, and the number of cases fell within the model's CI for the predicted number of cases during January-August 2015. This study shows that the ARIMA model fits the fluctuations in bacillary dysentery frequency, and it can be used for future forecasting when applied to bacillary dysentery prevention and control.

摘要

本研究旨在利用预测模型预测细菌性痢疾的发病率。我们收集了2004年1月至2014年12月确诊病例的年度和月度实验室数据。在本研究中,我们应用自回归积分滑动平均(ARIMA)模型预测中国江苏省细菌性痢疾的发病率。ARIMA(1, 1, 1)×(1, 1, 2)12模型与2004年1月至2014年12月期间的病例数完全拟合。然后,用拟合模型预测2015年1月至8月期间细菌性痢疾的发病率,病例数落在该模型对2015年1月至8月预测病例数的置信区间内。本研究表明,ARIMA模型符合细菌性痢疾发病频率的波动情况,应用于细菌性痢疾的预防和控制时可用于未来的预测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验