Suppr超能文献

金黄色葡萄球菌多糖荚膜和Efb依赖性纤维蛋白原屏障协同作用以抵御吞噬作用。

The Staphylococcus aureus polysaccharide capsule and Efb-dependent fibrinogen shield act in concert to protect against phagocytosis.

作者信息

Kuipers Annemarie, Stapels Daphne A C, Weerwind Lleroy T, Ko Ya-Ping, Ruyken Maartje, Lee Jean C, van Kessel Kok P M, Rooijakkers Suzan H M

机构信息

Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands.

Center for Infectious and Inflammatory Disease, Institute of Bioscience and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA.

出版信息

Microbiology (Reading). 2016 Jul;162(7):1185-1194. doi: 10.1099/mic.0.000293. Epub 2016 Apr 25.

Abstract

Staphylococcus aureus has developed many mechanisms to escape from human immune responses. To resist phagocytic clearance, S. aureus expresses a polysaccharide capsule, which effectively masks the bacterial surface and surface-associated proteins, such as opsonins, from recognition by phagocytic cells. Additionally, secretion of the extracellular fibrinogen binding protein (Efb) potently blocks phagocytic uptake of the pathogen. Efb creates a fibrinogen shield surrounding the bacteria by simultaneously binding complement C3b and fibrinogen at the bacterial surface. By means of neutrophil phagocytosis assays with fluorescently labelled encapsulated serotype 5 (CP5) and serotype 8 (CP8) strains we compare the immune-modulating function of these shielding mechanisms. The data indicate that, in highly encapsulated S. aureus strains, the polysaccharide capsule is able to prevent phagocytic uptake at plasma concentrations <10 %, but loses its protective ability at higher concentrations of plasma. Interestingly, Efb shows a strong inhibitory effect on both capsule-negative and encapsulated strains at all tested plasma concentrations. Furthermore, the results suggest that both shielding mechanisms can exist simultaneously and collaborate to provide optimal protection against phagocytosis at a broad range of plasma concentrations. As opsonizing antibodies will be shielded from recognition by either mechanism, incorporating both capsular polysaccharides and Efb in future vaccines could be of great importance.

摘要

金黄色葡萄球菌已经发展出许多逃避人类免疫反应的机制。为了抵抗吞噬清除作用,金黄色葡萄球菌表达一种多糖荚膜,它能有效地掩盖细菌表面以及与表面相关的蛋白质,如调理素,使其不被吞噬细胞识别。此外,细胞外纤维蛋白原结合蛋白(Efb)的分泌能有效阻断病原体的吞噬摄取。Efb通过在细菌表面同时结合补体C3b和纤维蛋白原,在细菌周围形成一层纤维蛋白原屏障。通过对荧光标记的5型(CP5)和8型(CP8)荚膜菌株进行中性粒细胞吞噬试验,我们比较了这些屏障机制的免疫调节功能。数据表明,在高度荚膜化的金黄色葡萄球菌菌株中,多糖荚膜在血浆浓度<10%时能够防止吞噬摄取,但在较高血浆浓度时失去其保护能力。有趣的是,在所有测试的血浆浓度下,Efb对荚膜阴性和荚膜化菌株均表现出强烈的抑制作用。此外,结果表明这两种屏障机制可以同时存在并协同作用,在广泛的血浆浓度范围内提供对吞噬作用的最佳保护。由于调理抗体将被这两种机制中的任何一种屏蔽而无法被识别,因此在未来的疫苗中同时纳入荚膜多糖和Efb可能具有重要意义。

相似文献

1
The Staphylococcus aureus polysaccharide capsule and Efb-dependent fibrinogen shield act in concert to protect against phagocytosis.
Microbiology (Reading). 2016 Jul;162(7):1185-1194. doi: 10.1099/mic.0.000293. Epub 2016 Apr 25.
2
3
Staphylococcal protein Ecb impairs complement receptor-1 mediated recognition of opsonized bacteria.
PLoS One. 2017 Mar 8;12(3):e0172675. doi: 10.1371/journal.pone.0172675. eCollection 2017.
4
5
Staphylococcus aureus capsular polysaccharide types 5 and 8 reduce killing by bovine neutrophils in vitro.
Infect Immun. 2005 Mar;73(3):1578-83. doi: 10.1128/IAI.73.3.1578-1583.2005.

引用本文的文献

1
BBK32 attenuates antibody-dependent complement-mediated killing of infectious Borreliella burgdorferi isolates.
PLoS Pathog. 2025 Jul 24;21(7):e1013361. doi: 10.1371/journal.ppat.1013361. eCollection 2025 Jul.
3
Bloodstream infections: mechanisms of pathogenesis and opportunities for intervention.
Nat Rev Microbiol. 2025 Apr;23(4):210-224. doi: 10.1038/s41579-024-01105-2. Epub 2024 Oct 17.
4
Combined metagenomic- and culture-based approaches to investigate bacterial strain-level associations with medication-controlled mild-moderate atopic dermatitis.
J Allergy Clin Immunol Glob. 2024 Apr 15;3(3):100259. doi: 10.1016/j.jacig.2024.100259. eCollection 2024 Aug.
5
A genetic regulatory see-saw of biofilm and virulence in MRSA pathogenesis.
Front Microbiol. 2023 Jun 22;14:1204428. doi: 10.3389/fmicb.2023.1204428. eCollection 2023.
6
On-person adaptive evolution of Staphylococcus aureus during treatment for atopic dermatitis.
Cell Host Microbe. 2023 Apr 12;31(4):593-603.e7. doi: 10.1016/j.chom.2023.03.009.
7
Fibrinogen γ' promotes host survival during Staphylococcus aureus septicemia in mice.
J Thromb Haemost. 2023 Aug;21(8):2277-2290. doi: 10.1016/j.jtha.2023.03.019. Epub 2023 Mar 30.
8
Mucoid enhances anti-phagocytosis through reducing C3b deposition.
Front Med (Lausanne). 2022 Sep 15;9:879361. doi: 10.3389/fmed.2022.879361. eCollection 2022.
9
Shifting focus from bacteria to host neutrophil extracellular traps of biodegradable pure Zn to combat implant centered infection.
Bioact Mater. 2022 Sep 15;21:436-449. doi: 10.1016/j.bioactmat.2022.09.004. eCollection 2023 Mar.
10
Role of Staphylococcus agnetis and Staphylococcus hyicus in the Pathogenesis of Buffalo Fly Skin Lesions in Cattle.
Microbiol Spectr. 2022 Aug 31;10(4):e0087322. doi: 10.1128/spectrum.00873-22. Epub 2022 Jul 11.

本文引用的文献

1
Investigational drugs to treat methicillin-resistant Staphylococcus aureus.
Expert Opin Investig Drugs. 2016;25(1):73-93. doi: 10.1517/13543784.2016.1109077. Epub 2015 Nov 4.
2
7
Neutrophil-Mediated Phagocytosis of Staphylococcus aureus.
Front Immunol. 2014 Sep 26;5:467. doi: 10.3389/fimmu.2014.00467. eCollection 2014.
8
Update on the antibiotic resistance crisis.
Curr Opin Pharmacol. 2014 Oct;18:56-60. doi: 10.1016/j.coph.2014.09.006. Epub 2014 Sep 23.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验